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Abstract 

Projecting the effects of proposed policy reforms is challenging because no outcome data exist for 
regulations not yet implemented. Our ex ante deep learning framework projects effects of proposed 
reforms by mapping past regulatory outcomes to proposed rules. Applied to the US Clean Water 
Act, ex ante algorithms generate exceptional performance improvements over domain experts, 
with fourfold higher identification of regulated waters and fiftyfold higher identification of non-
jurisdictional waters. Ex post models perform best. The Supreme Court’s 2023 Sackett decision 
removes protection from one-third of previously regulated waters, particularly floodplains and 
pristine fish habitats. The 2025 White House Energy Emergency Order and March Guidance 
deregulate ~0.5%. Algorithms can effectively project consequences of regulatory reforms before 
implementation, when projections are both most uncertain and most useful. 
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Evaluating proposed policy reforms is a critical task, since it can shape both how policymakers 1 
choose among alternative possible regulations and how private and public entities adapt to reforms. 2 
Government, academic, and private sector analysts generate hundreds of regulatory projections 3 
annually (1), and proposed legislation would expand government remit to include more 4 
environmental impacts (2, 3). The stakes are high—regulatory reforms can generate hundreds of 5 
billions of dollars in annual benefits, though also enormous costs (4, 5). 6 
 7 
Policy forecasting is also challenging since forecasts are made before a policy is implemented, 8 
when uncertainty is greatest. Because no outcome data exist for proposed policies, forecasting 9 
typically relies on domain experts like scientists, economists, and engineers. This challenge has 10 
led to the concern the existing ex ante evaluation system is “broken, … largely based on faith, 11 
rather than evidence” (6).  12 
 13 
We develop a relabeling methodology that provides among the first deep learning projections of 14 
new regulations’ effects. To address the absence of training data on proposed regulations, we map 15 
past regulatory outcomes (“labels”) to proposed rules. We compare performance of this 16 
methodology against published projections from domain experts and against ex post algorithms. 17 
Analysts increasingly use deep learning to interpret existing energy, environmental, financial, 18 
health, judicial, and labor market regulations (7–10), though not proposed reforms. 19 

We apply this methodology to study recent and proposed reforms to the 1972 US Clean Water Act 20 
(CWA), the cornerstone of federal water pollution control. The CWA protects the “Waters of the 21 
United States” (WOTUS) but does not enumerate which streams and wetlands this phrase covers. 22 
To determine whether the CWA protects a site, a developer can ask the Army Corps of Engineers 23 
(USACE) to evaluate the site and issue an Approved Jurisdictional Determination (AJD), 24 
indicating whether the CWA regulates it. USACE may issue permits for jurisdictional sites.  25 

Many stakeholders argue that the CWA and its recent reforms are costly and uncertain. Microsoft’s 26 
President summarized these permits in congressional testimony on data centers as the “number 1 27 
challenge” in development (11). A legal expert described courts modifying the CWA as sometimes 28 
“flying blind.” (12)  Media describe the regulatory landscape as “hazy” and “chaos” (13).  29 

In addition to implementing ex ante deep learning, we develop and train the ex post Clean Water 30 
Act Analysis of Regulation (CLEAR) deep learning model using about 200,000 AJDs. CLEAR 31 
provides the first ex post national quantitative analysis of regulation under the Supreme Court’s 32 
Sackett ruling, “one of the most impactful environmental decisions in the Court’s history” (14).  33 

Compared to algorithmic analysis of earlier CWA regulation (10), our deep learning models 34 
project effects of proposed regulations; analyze Sackett; study floodplains, fish habitat quality, and 35 
other ecosystem services; and implement numerous methodological improvements (SM A.1). We 36 
project regulation ex ante under Sackett, the 2025 White House National Energy Emergency 37 
Executive Order, and March 2025 USEPA and USACE Guidance (15).  38 

CWA Background 39 

“Regulatory ping pong” (16, 17) under the CWA—frequent reversals in rules between 40 
administrations and courts—includes six rules in the last decade, plus others under discussion or 41 



 

implementation (18). In the Supreme Court’s 2006 Rapanos case, Justice Kennedy’s concurring 42 
opinion found that jurisdictional waters required a significant nexus involving biological, physical, 43 
or chemical connections to traditional navigable waters. The 2016 Clean Water Rule (CWR) 44 
primarily clarified Rapanos; USEPA and USACE repealed CWR in 2019. The 2020 Navigable 45 
Waters Protection Rule (NWPR) followed Justice Scalia’s Rapanos plurality in restricting 46 
jurisdiction to relatively permanent waters with a continuous surface water connection to 47 
traditional navigable waters, excluding ephemeral streams and isolated wetlands. The 2023 Rule, 48 
litigated then enjoined in some areas, resembled Rapanos. Sackett echoed Justice Scalia’s Rapanos 49 
opinion, removed the significant nexus standard, required a continuous surface water connection, 50 
less directly embraced the relatively permanent standard, and excluded certain wetlands separated 51 
from navigable waters by barriers. Due to litigation, in September 2023, the USEPA implemented 52 
two versions of Sackett across states, which we pool given their similarity. In March 2025, the 53 
USEPA and USACE issued revised Sackett guidance, prompting 115,470 public comments (19). 54 
The June 2025 PERMIT Act, proposed in the US House, adds further changes; permitting reform 55 
currently has bipartisan support and may become a federal legislative priority in 2025-2026 (20). 56 

Predictive Models of CWA Jurisdiction 57 

In addition to describing a naïve benchmark assuming no jurisdiction, we compare four types of 58 
models. First, domain experts use geophysical data to characterize CWA jurisdiction (21, 22). 59 
Geophysical models underpin prominent Supreme Court briefs (23) and receive extensive media 60 
attention (24–26). Using maps of streams and wetlands, these models assume that features with 61 
predefined attributes characterize jurisdiction under new rules. We analyze a geophysical rule (22) 62 
assuming that non-tidal wetlands in the National Wetlands Inventory (NWI) inundated a certain 63 
share of the year lose jurisdiction. We also analyze a Connected geophysical rule echoing previous 64 
approaches (21, 27) which assumes wetlands within 50 meters of a stream that connects to a 65 
navigable water are jurisdictional. SM A.1 provides details. 66 

Second, Relabeled Sackett implements ex ante deep learning. We train Relabeled Sackett only on 67 
AJDs and knowledge preceding Sackett implementation, and project Sackett as NWPR but with 68 
labels changed to reflect Sackett (table S1 and SM A.1). We formalized the relabeling in a June 69 
2023 external email and presentation, far before USEPA announced its conforming rule or USACE 70 
began implementing it. 71 

Third, the ex post CLEAR deep learning model predicts jurisdiction under each rule. We pre-train 72 
deep learning models on AJDs from all rules in the relevant training data, then fine-tune on each 73 
rule individually (SM A.1).  74 

Fourth, we project jurisdiction under two ongoing reforms. The National Energy Emergency 75 
Executive Order of January 2025 purports to eliminate CWA jurisdiction for fossil fuel and 76 
hydroelectric energy sites. This order accelerates permitting (“fast-tracks”) for energy projects but 77 
does not otherwise change jurisdiction. Using CLEAR-Sackett predictions, we deregulate sites 78 
around energy infrastructure or high-potential fossil fuel resources (28) (SM A.1). To study a 79 
second ongoing reform, we relabel NWPR with labels reflecting the March 2025 Sackett guidance 80 
(15) (SM A.1), then train a deep learning model to predict the relabeled AJDs.  81 



 

As in climate science, a “projection” reflects an assumed future policy scenario. As in machine 82 
learning, a “prediction” reflects an algorithmic calculation of what a rule regulates based on data 83 
from implementation of that rule (29).  84 

Measuring Performance 85 

To measure model performance, we calculate statistics using a held-out test set (SM A.2). We 86 
focus on the area under the receiver operating characteristic curve (AUC) given its robustness to 87 
class imbalance (19.7% of sites in the test set are jurisdictional), invariance to the decision 88 
threshold used to produce binary classifications, and use of the full distribution of calibrated 89 
jurisdictional probabilities rather than reliance on a binary cutoff. We also report the F1 score, 90 
along with recall, precision, and specificity, given concern with false positives and false negatives; 91 
accuracy, given its simple interpretation and common use; and mean absolute error (MAE) 92 
nationally and by state, given usefulness for stakeholders. For metrics using binary classifications, 93 
we choose optimal thresholds using the validation set (SM A.7). We focus on Sackett, since all 94 
models have predictions for it, and more briefly discuss the performance of the ex post CLEAR 95 
deep learning model on earlier rules. 96 

The Wetness model (30) only has predictions for non-vegetated, non-anthropogenically 97 
influenced, shallow water non-tidal wetlands connected to jurisdictional streams and rivers. These 98 
areas only account for 1.1% of all Sackett AJDs, or 36 observations in the test set. We believe this 99 
restricted availability is underappreciated and limits applicability of the Wetness model. We 100 
therefore report results for this area and two related Wetness model interpretations. One applies to 101 
all polygons within the published analysis area (30) and assumes other sites are not jurisdictional. 102 
The other measures wetness across more NWI polygons (emergent, forested, and palustrine 103 
wetlands, representing 23% of the test set) and predict other wetlands as not jurisdictional.   104 

Model Results  105 

A naïve benchmark assuming no sites are jurisdictional has AUC of 0.50 and F1 of 0.000, by 106 
construction (table 1A and fig. S1).  107 

The Wetness (22) geophysical model provides little improvement (table 1B). The median Wetness 108 
criterion has an AUC of 0.498, just below the benchmark, and F1 of 0.007, just above the 109 
benchmark. Its recall implies only correctly identifying only 1 in 250 true positives. MAE and 110 
accuracy slightly underperform the benchmark. On the full sample, other wetness thresholds have 111 
similar performance (table S3). In the non-tidal wetlands sample (N=36), performance varies 112 
widely across scenarios, reflecting the small sample. Wetness scenarios 3 and 4, which perform 113 
best in the validation sample, have test set AUC of 0.417, well below the benchmark. 114 

The Connected geophysical model (table 1B) predicts no test set AJDs as jurisdictional, since none 115 
fall within connected wetlands. This geophysical model therefore has identical predictions and 116 
performance as the naïve benchmark. 117 

The ex ante deep learning model, Relabeled Sackett (table 1C), outperforms the geophysical 118 
models on most metrics. Relabeled Sackett has an AUC of 0.693, 0.193 higher than the Wetness 119 
or Connected geophysical models, considered an exceptional performance improvement in most 120 
algorithmic contexts. Its F1 score of 0.332 is 47 times the median Wetness model performance. 121 



 

Compared to the Wetness model, Relabeled Sackett is four times more likely to identify true 122 
positives and fifty times more likely to identify true negatives, though has comparable accuracy. 123 

The ex post CLEAR model substantially outperforms the geophysical models and moderately 124 
outperforms ex ante deep learning (table 1D). The ex ante and ex post deep learning models have 125 
similar AUC. By this important performance metric, the ex ante model therefore has sufficient 126 
insight from relabeling that ex post implementation data do not improve model performance.  127 

Ex post implementation data do improve model performance on metrics other than AUC. On the 128 
F1 score, the ex post CLEAR model substantially outperforms other models, due to its avoidance 129 
of both false positives and false negatives. CLEAR’s national MAE of 0.001 means it almost 130 
perfectly projects the actual mean national jurisdiction of test set Sackett sites.   131 

CLEAR achieves AUC above 0.80 on the other rules (NWPR, CWR, and Rapanos), exceeding 132 
levels for Sackett (table S4A). Rapanos and CWR let CLEAR observe more true positives, 133 
increasing recall. NWPR and Sackett have fewer true positives, decreasing opportunities to learn 134 
to predict positives for these rules. CLEAR national MAE is also near zero for Rapanos and 135 
NWPR, though much higher for CWR, which has the smallest sample. 136 

Describing Jurisdiction 137 

Geophysical models predict little jurisdiction for Sackett (table S2), though their scenarios range 138 
widely (table S5). The median Wetness model (22) predicts that Sackett regulates 2.6% of the US, 139 
covering 16.5% of wetland acres and 6.7% of stream miles. The original Wetness scenarios 140 
conclude that under Sackett, 0 to 80 percent of non-tidal wetlands are jurisdictional, a range wide 141 
enough to be “bogged down in mystery” (31). Wetness scenarios range widely because the results 142 
depend on assumptions about how USACE interprets Sackett. Additionally, the Wetness model 143 
sample (30) excludes many jurisdictional Sackett AJDs (fig. S2).  144 

The Connected geophysical model concludes that almost no test set streams or wetlands are 145 
jurisdictional. It predicts low jurisdiction rates because its input layers (the National 146 
Hydrography—NHD—and  NWI) miss many jurisdictional Sackett sites.  147 

The ex ante deep learning model, Relabeled Sackett, projects that Sackett regulates of 13.4% of 148 
the contiguous US, 36.0% of stream miles, and 31.4% of wetland acres (table S2). Relative to the 149 
median Wetness model, Relabeled Sackett predicts four times more regulation of streams and 150 
double the regulation of wetlands.  151 

The ex post deep learning model, CLEAR, calculates that Sackett regulates 11.5% of the 152 
contiguous US, including 24.9% of stream miles and 27.8% of wetland acres (table S2). = Sackett 153 
is 2.5 times more likely to regulate perennial streams than to regulate intermittent and ephemeral 154 
streams. This difference is arguably smaller than one might expect, since Sackett largely intends 155 
to deregulate ephemeral but not perennial streams, but this statistic may partly reflect 156 
misclassification of stream types in NHD. CLEAR indicates that 11.2% of areas not in NHD and 157 
8.7% of areas not in NWI’s palustrine wetlands are jurisdictional, further underscoring potential 158 
limits of NHD and NWI and geophysical models that exclusively rely on them. Only one-third of 159 
floodplains in the US are jurisdictional under Sackett, a statistic where the ex post CLEAR-Sackett 160 
and ex ante Relabeled Sackett deep learning models almost perfectly agree. 161 



 

CLEAR shows that Sackett regulates fewer waters than any previous rule (table S6). Rapanos 162 
regulated 46% of stream miles, 41% of wetland acres, and 18% of contiguous US area. NWPR 163 
deregulated 9% of regulated stream miles and deregulated 15% of regulated wetland acres. 164 
Compared to Rapanos, Sackett deregulates one-third of regulated streams and wetlands and 28% 165 
of regulated floodplains. This amounts to over 700,000 stream miles and 19 million wetland acres. 166 
Sackett deregulates the most wetland acres in Florida and Michigan (table S7). The floodplain 167 
deregulation may increase development and corresponding risk of flood damage. Our estimates of 168 
regulation under NWPR exceed those of prior algorithmic estimates (10), partly since we average 169 
calibrated probabilities while prior work averages binary jurisdictional predictions (SM B.2). 170 

NWPR and Sackett both have a basis in Justice Scalia’s Rapanos opinion, but the differences are 171 
so far largely unquantified. CLEAR finds that Sackett regulates systematically less than NWPR, 172 
including 20% fewer wetland acres (table S6).  173 

The March guidance and Energy Emergency Order each decrease jurisdiction of streams and 174 
wetlands relative to Sackett by 0.5 pp (table S2D). Because the March guidance model relabels 175 
NWPR AJDs, Relabeled Sackett provides our preferred comparison for it. These policy proposals 176 
therefore represent far less dramatic jurisdictional changes than other CWA rule changes of the 177 
past decade. 178 

Fig. 1 graphs the “regulatory ping pong” of recent CWA regulation. Jurisdiction fluctuated 179 
between 2018 and 2020 due to differences between CWR and Rapanos. The share of stream and 180 
wetland points regulated fell by 15% in 2020 and returned to broader jurisdiction in late 2021. 181 
Jurisdiction declined by around a third in 2023. We project that the proposed rules would modestly 182 
decrease jurisdiction.  183 

Maps of CLEAR’s ex post predictions reveal enormous spatial differences across rules and models 184 
(Figs. 2 and S3). Ex ante and ex post deep learning models of Sackett predict qualitatively similar 185 
spatial patterns, though the ex ante model predicts more regulation in the coastal plans of the mid-186 
Atlantic and near the Pacific coast. The ex post CLEAR model reveals that compared to Rapanos, 187 
Sackett deregulates isolated wetlands in coastal and inland areas, and ephemeral streams across 188 
the arid West. Sackett deregulates streams and wetlands in almost every state (table S7). Compared 189 
to NWPR, Sackett primarily deregulates wetlands along the East Coast and in some areas of the 190 
Pacific Northwest, but changes jurisdiction little across the Arid West (fig. S3E). The March 2025 191 
guidance further deregulates some Eastern coastal wetlands. The National Energy Emergency 192 
Executive Order particularly deregulates the Marcellus and Bakken shales, plus shale and oil fields 193 
in Texas.  194 

Case studies highlight local differences across rules and predictions, and agreement between the 195 
ex ante and ex post Sackett deep learning models (Figs. 3 and S4). In wetland-abundant regions 196 
like Michigan’s Upper Peninsula and North Carolina’s coast, Sackett regulates fewer isolated 197 
wetlands and small water bodies than Rapanos. In drier regions, Sackett, NWPR, and the March 198 
guidance deregulate ephemeral streams. The wetness model has no predictions in most of these 199 
areas, given its restriction to a narrow set of non-tidal wetlands.  200 

Wetlands support ecosystem services including flood mitigation and water filtration, and support 201 
CWA goals of decreasing water pollution and improving water-based recreation including fishing. 202 
Sackett deregulates areas important to all four of these objectives (fig. 4 and table S8). For 203 



 

example, in areas not used for drinking water, Sackett has 5 pp lower probability of regulation than 204 
Sackett; in areas used for drinking water sources, Sackett has 10 pp lower probability of regulation. 205 
In areas where a large share of waters is too polluted to support intended uses (“impaired”), Sackett 206 
has 10 pp lower probability of regulation than Sackett. The March guidance expands these gaps 207 
(fig. S8). 208 

Discussion 209 

Many groups may value accurate projections of the effects of proposed environmental regulations, 210 
including politicians, judges, federal and state agency staff, land developers, environmental 211 
restoration firms, industrial firms, farmers, and environmental organizations. Relabeling lets deep 212 
learning provide such projections. This framework helps address a critical problem of policy 213 
analysis—projecting effects of proposed policies before data on exist on outcomes of the proposed 214 
reforms—a time period when analysis is both most uncertain and most useful.  215 

Our analysis of recent CWA reforms finds that ex ante deep learning far outperforms expert 216 
geophysical projections on most measures of predictive performance. Expert projections provide 217 
marginal improvement over a naïve benchmark. Ex post deep learning has the highest predictive 218 
performance and describes enormous decreases in wetland and stream jurisdiction under Sackett. 219 

Future work can further clarify the potential contributions of deep learning and domain experts to 220 
projecting other reforms’ effects. Recent or ongoing reforms to wetland protection in Chile, China, 221 
the EU, Japan, and elsewhere may provide opportunities for similar analysis (32–37). The 222 
frequency of regulatory reforms in financial, labor market or other environmental domains 223 
provides many opportunities to investigate related methods. 224 

In any setting, the relative performance of ex ante deep learning versus domain experts may depend 225 
on the extent to which relabeling effectively characterizes the policy reform.  More precise 226 
descriptions of proposed reforms, and descriptions which overlap with labels of prior policies, may 227 
improve relabeling performance. Agency capacity, evolving interpretations, willingness to enforce 228 
policy changes, and voluntary compliance by regulated entities can all vary a regulation’s impacts. 229 
One interpretation is that in our setting, agencies treat regulatory reforms in a fashion that flexible 230 
interpretation from past reforms can effectively project. 231 

While we focus on projecting effects of regulation, a related and important question asks whether 232 
agency interpretation of a regulation fits with the intent of a law as written. This represents another 233 
area almost exclusively analyzed by domain experts, and where the potential contribution of deep 234 
learning remains unknown. More involved human-in-the-loop frameworks, where domain experts 235 
and algorithms collaboratively improve an evaluation system’s capabilities, may also provide a 236 
useful path to integrate relative advantages of both approaches. 237 
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Fig. 1. “Regulatory ping pong” reflects large variation in CWA jurisdiction across rules. The graph shows the share of points within 
50 meters of stream or wetland (NHD or NWI) features that are predicted as jurisdictional each month. To determine which rule applied 
in each month, we use the rule used to decide a majority of AJDs within each state in each month, calculate statistics by state, and 
average across states, weighting by the number of points in the state. Between January 2018 and August 2019, some states implemented 
CWR and others implemented Rapanos, due to contemporaneous lawsuits challenging CWR. Fluctuations in the share of locations 
regulated during this period reflect state-level changes in rules applied due to stays on CWR’s implementation (38). Rapanos applied from 
September 2019 to May 2020. NWPR applied from June 2020 to August 2021. Rapanos (defined to include the 2023 rule) applied again 
from September 2021 to August 2023. Sackett applied from September 2023 onwards. The USEPA and USACE are implementing two 
versions of Sackett in different states due to pending litigation, which we pool given their similarity. Between August 2023 and March 
2025, the solid line shows the CLEAR-Sackett ex post prediction of jurisdiction, and the dashed line shows the ex ante Relabeled Sackett 
prediction. Post March 2025 plots projections. Dash-dotted lines project the 2025 Energy Emergency Executive Order. Dotted lines project 
March 2025 guidance. 
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Fig. 2. Maps show that regulation under all rules varies enormously across the US. 
Panels show calibrated probabilities of CWA regulation under (A) Sackett, (B) Rapanos, (C) 



 

 

NWPR, and projections of regulation (D) Relabeled Sackett, and (E) March 2025 Guidance. 
Maps aggregate the four million prediction points by taking the mean model score in 5 km by 5 
km grid cells (~8 prediction points per grid cell). Extreme calibrated probabilities (0.0-0.1; white, 
0.9-1.0; blue) are plotted with the same color. 
    
  



 

 

       CLEAR-Rapanos                  CLEAR-Sackett                  Relabeled Sackett  
A  Upper Peninsula Wetlands, Michigan 

                           
B  Holly Shelter Game Area, North Carolina 

                           
C  Colorado River south of Moab, Utah 

                           
D  Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana 

                           

 
Fig. 3. Case studies reveal performance of relabeling methodology and spatial patterns of 
jurisdiction. Columns show calibrated model scores for subsets of the 4 million random 



 

 

prediction points under three different deep learning models. Left column shows CLEAR-
Rapanos, center column shows CLEAR-Sackett, right column shows the ex ante Relabeled 
Sackett. (A) Lakes and wetlands in the Upper Peninsula of Michigan. All models predict 
jurisdiction for large water bodies with high confidence. CLEAR-Rapanos predicts regulation 
across most of the area, CLEAR-Sackett predicts less regulation for surrounding wetlands, and 
Relabeled Sackett closely reflects the ex post CLEAR-Sackett. (B) Holly Shelter Game Area, 
North Carolina. CLEAR-Rapanos predicts jurisdiction across most of this coastal outdoor 
recreation area. CLEAR-Sackett predicts systematically less jurisdiction, and Relabeled Sackett 
is intermediate. (C) Colorado River and ephemeral streams south of Moab, Utah. All models 
classify the Colorado River as jurisdictional. Differences between CLEAR-Rapanos and CLEAR-
Sackett model scores show deregulation of ephemeral streams supplying the river. Relabeled 
Sackett predicts slightly less jurisdiction of ephemeral streams than CLEAR-Rapanos. (D) 
Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana. All models classify 
Flathead Lake in the southwest of the image and the Hungry Horse Reservoir in the northeast 
corner as jurisdictional. CLEAR-Rapanos predicts extensive regulation for areas of Flathead 
Forest between the water bodies; CLEAR-Sackett predicts little regulation, and Relabeled Sackett 
concurs.  
  



 

 

 
A  Drinking water sources  B  Floodplains 

  
C  Polluted waters    D  Fish habitat conditions 

  
Fig. 4. Sackett deregulates areas supporting ecosystem services and areas important for 
CWA goals. (A) Share of points in drinking water source areas. (B) Share of points in floodplains. 
(C) Proportion of assessed waters considered “impaired” based on pollution and intended use. 
(D) Fish habitat conditions (0=worst, 1=best). Each panel splits 4 million random points into the 
251,975 5km by 5 km grid cells used to plot fig. 2. In each graph, the y-axis shows the mean 
calibrated probability from CLEAR-Rapanos and CLEAR-Sackett, and the x-axis shows the mean 
ecosystem value within the grid cell. The x-axis divides grid cells into equal-width bins (0-1 scale) 
based on underlying values. The legend shows the grid-level regression coefficient with standard 
errors in parentheses. In all four panels, a hypothesis test that Rapanos and Sackett have equal 
slopes rejects with p-value < 0.000, estimated from the interaction term in a pooled regression 
including both rules. Impaired waters and fish habitat conditions are measured by 12-digit 
hydrologic unit code (HUC12) from the EPA’s 2025 Restoration and Protection Indicator 
Database.  
 
  



 

 

 
 
 

 

             

Mean 
absolute 

error 
  AUC F1 Precision Recall Specificity Accuracy US State 
  (1) (2) (3) (4) (5) (6) (7) (8) 
A Naïve benchmark                 
 1. No jurisdiction 0.500 0.000 — 0.000 1.000 0.803 0.197 0.265 
                  
B Ex ante geophysical 
models               
 2. Wetness  0.498 0.007 0.118 0.004 0.993 0.798 0.191 0.258 
 3. Connected  0.500 0.000 — 0.000 1.000 0.803 0.197 0.265 
                  
C Ex ante deep learning               
 4. Relabeled Sackett 0.693 0.332 0.457 0.261 0.930 0.796 0.067 0.166 
                  
D Ex post deep learning               
 5. CLEAR - Sackett 0.691 0.368 0.502 0.290 0.973 0.819 0.001 0.182 
 

Table 1. Geophysical models improve little on naïve benchmark, ex ante Relabeled Sackett 
model does better, ex post CLEAR model has strongest performance. All statistics use AJD 
test set. AUC: Area under the receiver operating curve. F1: harmonic mean of precision and recall. 
Precision: TP / (TP + FP), where TP is the count of true positive predictions and FP is the count 
of false positive predictions. Recall: TP / (TP + FN), where FN is the count of false negative 
predictions. Precision is undefined if a model makes no positive predictions. Specificity: TN / (TN 
+ FP), where TN is the count of true negative predictions. Accuracy: percent correct. Column (7) 
equals |mean(𝐽𝐽𝑖𝑖) − mean(𝐶𝐶𝑖𝑖)|, where 𝐽𝐽𝑖𝑖 represents AJD jurisdiction and 𝐶𝐶𝑖𝑖 represents model 
predictions. Column (8) equals (1/S)∑ |𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖(𝐽𝐽𝑖𝑖𝑖𝑖)  − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖(𝐶𝐶𝑖𝑖𝑖𝑖)|𝑠𝑠 , i.e., the mean across states 
of the mean true jurisdiction rate within each state minus the mean jurisdiction rate of model 
predictions within each state. Row 1 describes a naïve benchmark that predicts no location is 
jurisdictional. Row 2 describes the median Wetness model (22), “seasonally flooded.” Row 3 
defines points as jurisdictional if they fall within a National Wetlands Inventory (NWI) polygon that 
is within 50 meters of a National Hydrography Dataset (NHD) flowline that terminates in a 
navigable water. Row 4 describes Relabeled Sackett, which trains a deep learning model to 
predict resource types in Navigable Waters Protection Rule (NWPR) AJDs relabeled as an ex 
ante projection of Sackett. Row 5 describes the ex post CLEAR-Sackett model. Rows 4 and 5 
show performance of calibrated probabilities with thresholds optimized for performance for F1 in 
columns (2), (3), and (4), accuracy in columns (5) and (6), national mean absolute error (MAE) in 
column (7), and state MAE in column (8). Column (1) depends on model calibrated probabilities 
and is independent of threshold choice. Table S13 and fig. S6 show the optimized thresholds. All 
models describe Sackett. Table excludes the Energy Emergency Executive Order and March 
2025 guidance since they lack ex post implementation data to evaluate performance. N = 2,777.  
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A. Materials and Methods 1 

A.1: Predictive Model Details 2 

Ex Ante Geophysical Sackett Models. The Wetness model (22) analyzes several inundation 3 
frequency scenarios based on Cowardin water regimes reported in the NWI. Ex ante, it is unclear 4 
which scenario performs best. The main text reports the median scenario in terms of wetness 5 
(scenario 4 out of 8), though we discuss all scenarios (table S3), and mention that scenarios 3 and 6 
4 have the best performance in the validation set. We observe both jurisdictional and non-7 
jurisdictional AJDs in six of the eight water regimes with at least one AJD (fig. S2).  8 

The Connected model identifies as jurisdictional any points within an NWI wetland polygon that 9 
is within 50 meters of an NHD flowline terminating in a navigable water. We identify navigable 10 
NHD flowlines as those that terminate in the Pacific or Atlantic Oceans, the US border, or 11 
manually identified navigable lakes such as the Great Lakes or Humboldt Lake, reflecting previous 12 
work (21, 27). Additionally, we consider a series of geophysical models that use individual layers 13 
to predict jurisdiction (see SM B.1 and table S4). 14 

Ex Ente Relabeled Sackett Model. AJD data include rule-specific legal classifications (“resource 15 
types”) for each water body. Under NWPR, for example, USACE AJDs classify some sites as 16 
“adjacent wetlands” and others as “non-adjacent wetlands.” Table S1 presents our relabeling 17 
scheme for the Relabeled Sackett model. This relabeling scheme assumes that relative to NWPR, 18 
Sackett deregulates wetlands separated from navigable waters by artificial structures and natural 19 
features. We believe these specific relabeling choices follow directly from majority opinion in 20 
Sackett. We chose them in June 2023, before USEPA announced a conforming rule or USACE 21 
announced associated guidance. We use these relabeled AJDs to fine-tune a deep learning model. 22 
We pre-train the deep learning model on all non-Sackett AJDs. SM B.5 of Greenhill et al. (10) 23 
mentions the concept of changing labels in old data to describe new rules, though questions the 24 
potential performance of this approach and does not implement it. 25 

Although we apply our relabeling methodology to a computer vision problem, the approach builds 26 
on the tradition of weak and indirect supervision in natural language processing (39–41). Whereas 27 
many weak supervision techniques generate labels for unlabeled data using heuristics or 28 
knowledge bases, our approach transforms a corpus of already-labeled data into a new label space. 29 
Unlike ex post deep learning models (9, 10), which are trained using true labels from the target 30 
task, or simulation-based methods (42), which project outcomes using process-based 31 
environmental models, our relabeling methodology derives target-task labels by mapping 32 
historical decisions to the criteria of a new regulation. This allows deep learning projections before 33 
any true target-task data exist, enabling ex ante projection and ex post validation under real policy 34 
changes. 35 

Compared to algorithmic analysis of CWA regulation (10), methodological improvements in the 36 
current paper are to use synthetic training data; fine-tune on individual rules; fuse image and 37 
tabular data; and incorporate model score calibration and optimal classification thresholds 38 

Ex Post CLEAR Model. We fine-tune deep learning models to predict jurisdiction for each of the 39 
four main rules enforced since 2018—CWR, Rapanos, NWPR, and Sackett. We pre-train on AJDs 40 



from all rules, then fine-tune using only AJDs from one rule, resulting in one model per rule. The 41 
next section describes deep learning architecture and training details.  42 

The deep learning models can predict jurisdiction for any coordinate in the contiguous US. They 43 
therefore avoid a predetermined decision between a framework only designed to analyze streams 44 
(43) or only designed to analyze non-tidal wetlands (22); each of these categories covers a small 45 
fraction of all AJDs. 46 

Ex Ante Projections. The National Energy Emergency Executive Order does not change the 47 
process of determining jurisdiction under Sackett. Instead, it allows development of energy 48 
projects to avoid the CWA regulatory process. We identify US area currently used for energy 49 
projects with information from the Energy Information Agency (44). We also identify area primed 50 
for future development from Bartik et al. (28). We take CLEAR-Sackett calibrated probabilities, 51 
and reset the calibrated probability to zero in three separate cases: if the location is (1) within 100 52 
meters of an energy facility (e.g., power plants, refineries, market hubs), (2) within 10 meters of 53 
an energy transmission line or pipeline, or (3) within a “high prospectivity” county as defined by 54 
Bartik et al. (28) and considered not developed nor used for agriculture by NLCD. This projection 55 
abstracts from legal actions that could modify or delay implementation of this order. 56 

To project the impact of the March 2025 guidance on jurisdiction, we relabel NWPR with 57 
jurisdictional labels changed to reflect the new guidance, labeling wetlands without a “continuous 58 
surface connection” as not regulated (table S1) (15). We then fine-tune a deep learning model on 59 
the relabeled NWPR AJDs, starting from a model pre-trained on all AJDs. We relabel NWPR 60 
AJDs to project jurisdiction under the March 2025 guidance because resource types in the NWPR 61 
AJDs identify wetlands separated by artificial structures, flooding, or natural resources, and these 62 
categories are relevant to our relabeling for the March 2025 guidance. We do not relabel Sackett 63 
or Rapanos AJDs to project jurisdiction under March 2025 guidance because the AJD resource 64 
types used in these rules lack the information required for this relabeling (tables S9, S10). 65 

A.2: Model Architecture 66 

The relabeling and CLEAR deep learning models use a multimodal deep learning architecture that 67 
integrates both raster and tabular data to predict CWA jurisdiction. The model outputs a score 68 
between 0 and 1 reflecting the model’s predicted likelihood that a site is jurisdictional under a 69 
given CWA rule. 70 
 71 
The model’s primary branch is a ResNet-18 backbone (45) pre-trained on ImageNet (46). The 72 
features extracted from the ResNet-18 after the final global average pooling operation are 73 
concatenated with a vector of tabular features. These concatenated raster and tabular features are 74 
then passed through a two-layer perceptron with a final sigmoid activation to produce the model 75 
score. This multimodal design allows for greater computational efficiency than the pure 76 
convolutional neural network approach of Greenhill et al. (10), which required rasterizing the 77 
tabular data. 78 

The raster branch of the model has 29 input layers: color and near infrared aerial imagery; the 79 
locations and characteristics of streams and wetlands; elevation; summary statistics of long-run 80 
average precipitation, temperature, dewpoint temperature, vapor pressure deficit, solar radiation, 81 



and cloudiness; soils data; and land cover data. SM A.5 provides additional details about input 82 
layers. Twenty-eight of these layers were used in Greenhill et al. (10); we add land cover data from 83 
the Coastal-Change Analysis Program (C-CAP) due to its resolution and quality, while recognizing 84 
that C-CAP covers only coastal areas. The model takes in 512-by-512 pixel rasters centered at the 85 
location whose jurisdictional status is being evaluated, corresponding to an area of 308-by-308 86 
meters. These inputs provide a detailed snapshot of ground conditions affecting the probability of 87 
CWA jurisdiction and include the main national layers that USACE reports using in AJDs. 88 

We experimented with a geo-foundation model in the validation set that used embedding fields 89 
(48) but found that it modestly decreased performance, perhaps because other layers had similar 90 
information and due to the sample size. The Clean Water Act Analysis of Regulation (CLEAR) 91 
model therefore does not use these embedding fields data. 92 

Train-Test Split. We divide the 202,295 AJDs into disjoint training, validation, and test data sets, 93 
avoiding footprint overlap to prevent leakage across folds (fig. S5). We train each algorithm using 94 
80% of the data, then tune hyperparameters and choose model design using the validation set, with 95 
10% of the data. All performance statistics here represent a held-out 10% test set.  96 

CLEAR uses the train, test, and validation split rules from Greenhill et al. (10) (SM, lines 33-43), 97 
with a few extensions. When assigning groups for new Approved Jurisdictional Determinations 98 
(AJDs), we first create footprint groups for AJDs whose footprints overlap. If a new AJD's 99 
footprint group overlaps with multiple footprint groups of AJDs used in the original model, the 100 
new AJDs take the split of the AJD it overlaps with. If the new footprint groups connect AJDs that 101 
the original model put in separate groups, we assign or reassign all to the same split. If an AJD 102 
from the original model is in the train split, we assign all connecting AJDs to training, then testing, 103 
and finally validation. We split all new AJDs that do not overlap following the procedure in (10). 104 

A.3: Synthetic Data 105 

AJDs focus on ambiguous cases and contain few locations with unambiguous jurisdiction (e.g., 106 
few sites in the middle of the Great Lakes or Mississippi River, or on desert mountain peaks). 107 
Augmenting the AJD data with locations where expert knowledge suggests unambiguous 108 
jurisdiction may improve model generalizability. Adding unambiguous examples to the training 109 
set may also improve the model's performance on the AJD test set if the unambiguous examples 110 
provide relevant information to AJD jurisdiction, by helping the model learn features that predict 111 
both the unambiguous examples and the AJDs. 112 

We therefore add synthetic AJDs to the training and validation sets. We generate jurisdictional 113 
synthetic AJD points in perennial streams that terminate in navigable waters and in the largest 98 114 
inland lakes that are deep enough for boat access. We generate non-jurisdictional synthetic AJDs 115 
in isolated wetlands (prairie potholes, playas, West Coast vernal pools, and salt flats) and along 116 
hydrologic region (HUC2) boundaries (table S11, table S12). This hand-labeling procedure 117 
represents a case of human-in-the-loop machine learning, where algorithms and human feedback 118 
collaboratively improve performance (47). 119 

We develop separate procedures for identifying unambiguously jurisdictional and non-120 
jurisdictional locations, as detailed below. Figs. S5a and S5b map the results. 121 



Synthetic Data: Jurisdictional Locations. We generate jurisdictional synthetic training data 122 
within National Hydrography Dataset (NHD) (49) area stream, river, sea, and ocean polygons that 123 
connect to NHD flowlines terminating at navigable waters. All NHD flowlines list their terminal 124 
feature. We identify all NHD flowlines whose terminal feature is coastal, a large inland lake such 125 
as the Great Lakes or Humboldt lake, or at the US border; these are potentially navigable. To 126 
ensure completeness, we manually investigate the jurisdictional status of terminal features not 127 
meeting the criteria above that serve as a terminus for over 1000 other flowlines. 128 
 129 
We keep all NHD area polygons classified as streams/rivers (fcode: 46006) or sea/ocean (fcode: 130 
44500) that spatially intersect with a flowline identified above. To ensure we select coordinates 131 
inside the water body, we generate a 10 meter buffer inside the boundary of each NHD area 132 
polygon. Finally, we randomly select coordinates from these polygons. Fig. S5a shows this 133 
primarily selects traditional navigable waters. 134 

Synthetic Data: Non-Jurisdictional Locations. We draw two sets of non-jurisdictional synthetic 135 
data: isolated wetlands and hydrologic unit code (HUC2) boundaries. 136 

Synthetic Non-Jurisdictional Data: Isolated Wetlands. We identify wetlands that are not 137 
jurisdictional under Sackett or NWPR following the classification of Tiner (50). For each isolated 138 
wetland type in Table 1 and Figure 3 of Tiner (50), we identify the US region with that type of 139 
isolated wetlands. Tables S11 and S12 describe our mapping from Tiner (50) wetland types to 140 
geographic regions. In some cases, one wetland type spans multiple geographic regions. We were 141 
unable to link about half of the Tiner categories to specific US regions, and therefore do not 142 
generate synthetic non-jurisdictional training data for these areas. 143 

We then identify isolated wetlands separately for each region and isolated wetland type. We take 144 
all National Wetland Inventory (NWI) (51) polygons at least 100 meters from any navigable water, 145 
where navigable waters are defined as above. 146 

To identify wetland types for non-jurisdictional synthetic data, we tabulate all AJDs with the 147 
identified NWI polygons satisfying the criteria of the previous paragraph, separately by Cowardin 148 
code (table S12). We require that AJDs within wetlands of that Cowardin code must satisfy the 149 
following additional criteria:  150 

1. We must observe at least 25 AJDs falling within wetlands of that Cowardin code;  151 
2. Across all rules, no more than 10% of AJDs within these wetlands can be 152 

jurisdictional;  153 
3. No more than 5% of Navigable Waters Protection Rule (NWPR) and Sackett AJDs 154 

within these wetlands can be non-jurisdictional.  155 

As one test of whether this procedure effectively identifies isolated wetlands, among the Sackett 156 
AJDs satisfying these criteria, we find that the Army Corps of Engineers (USACE) classifies 157 
resource codes for 97% as isolated wetlands. Other rules lack a distinct resource type for isolated 158 
wetlands, so we cannot report comparable statistics from AJDs for other rules. We generate 159 
synthetic non-jurisdictional training data for NWPR and Sackett only, as the jurisdictional status 160 
of these types of wetlands is ambiguous under other rules. 161 



Synthetic Non-Jurisdictional Data: HUC2 Boundaries. We generate additional synthetic non-162 
jurisdictional training data along hydrologic region boundaries. The US Geological Survey defines 163 
a HUC as land area within which surface water drains to a point. We focus on the 21 HUC2 water 164 
resource regions, which define the drainage areas of one or multiple major rivers. HUC2 165 
boundaries are typically uplands, since they demarcate one drainage region from another, and thus 166 
are not jurisdictional. For example, the Pacific Northwest constitutes one HUC2, bounded by 167 
several mountain ranges (Pacific Coast, Siskiyou, Absaroka, and others). The Continental Divide 168 
and Great Basin distinguish parts of other HUC2 boundaries. One could oversimplify a HUC2 169 
boundary as a mountain ridge where one side has streams flowing to the East and the other side 170 
has streams flowing to the west, though many HUC2 boundary areas in the Midwest and South 171 
are in the high portion of low-elevation, gently sloped areas. 172 

To generate synthetic training data along HUC2 boundaries, we randomly sample points satisfying 173 
the following criteria: 174 

1. Within 50 meters of HUC2 boundaries  175 
2. Not within 50 kilometers of international borders  176 
3. Not within 50 meters of any NHD flowline that NHD indicates terminates in an ocean, 177 

large inland lake, or US border  178 
4. Not within 50 meters of any NHD area polygon intersecting such NHD flowlines. 179 

We exclude areas within 50 kilometers of international borders since some HUC2 boundaries 180 
coincide with oceans and Great Lakes.  181 

As one test of whether this strategy accurately identifies non-jurisdictional areas, we examine the 182 
69 true AJDs satisfying all these criteria. Among these AJDs, 37 were completed under Rapanos, 183 
7 under the Clean Water Rule, 7 under NWPR, and 18 under Sackett. USACE concluded that none 184 
of these 69 AJDs are jurisdictional.  185 

Synthetic Data: Model Training. In model development, we experimented with including 186 
different quantities of synthetic data, between about 500 synthetic points up to 100,000. We found 187 
that AJD validation set performance was maximized around 1,000 points of each synthetic type 188 
(i.e., 1,000 synthetic jurisdictional points, 1,000 synthetic non-jurisdictional points from HUC2 189 
boundaries, and 1,000 of each of the synthetic non-jurisdictional isolated wetland types).  190 

Synthetic data improve model performance both for traditional navigable waters and more 191 
ambiguous cases. The model has near-perfect accuracy on synthetic data. Additionally, including 192 
synthetic data improves model accuracy on AJDs by 2 to 3 percentage points in the validation set, 193 
as well as improving both precision and recall by 6 to 7 percentage points each. This suggests that 194 
including synthetic points helps the model distinguish between ambiguous and unambiguous 195 
decisions, and so reduces the rate at which the model produces both false positive and false 196 
negative predictions. 197 

A.4 AJD PDF Files  198 

We obtain labels from tabular data that USACE and USEPA provide online (52) and downloaded 199 
on March 24, 2025. For each AJD, USACE staff complete a document listing jurisdiction of each 200 
potential water resource in the project, and USACE and USEPA then separately hand-enter the 201 



AJD content into the tabular data we use as labels. These AJD documents are available for a limited 202 
subset of sites, while the tabular data are available for all.  203 

To assess potential classification errors in the labels, we manually compare labels in the tabular 204 
data and the AJD documents. We find that labels in the AJD documents disagree with labels in the 205 
tabular data for 3.4% of AJDs, and have coordinates differing by more than 217.8 meters, meaning 206 
that the input data tile does not include the location evaluated by the AJD, for 19.4% of AJDs. The 207 
percentage of differential coordinates partially reflects many project PDFs listing the project 208 
centroid, rather than the centroid of the relevant water feature. We do not use the AJD document 209 
labels or coordinates as ground truth data because the documents are only available for 7,556 of 210 
over 40,000 projects in our sample; because a single document often reports labels for many 211 
potential water resources within a development project and correctly mapping each water feature's 212 
label to the water features within the project can introduce additional error; and few AJD 213 
documents list coordinates for individual water resources, while many list coordinates for the 214 
project centroid. 215 

A.5 Input Layers 216 

Our deep learning models take as inputs 29 raster layers and 89 tabular features. Twenty-eight of 217 
the raster layers are identical to those used in Greenhill et al. (10): three-band color and near 218 
infrared aerial imagery from the National Agricultural Imagery Program (NAIP) (53); wetland 219 
types from NWI (51); river and stream feature codes, stream order, seasonal high and low flows, 220 
and path lengths from NHD; elevation from the 3D Elevation Program; land cover data from the 221 
National Land Cover Dataset (NLCD) (54); soil taxonomic class, hydric rating, water table depth, 222 
flooding frequency, and ponding frequency from the Gridded National Soil Survey Geographic 223 
Database (gNATSGO) (55); average annual total precipitation, average daily minimum 224 
temperature, average daily maximum temperature, average daily mean temperature, average daily 225 
dew point temperature, average daily minimum vapor pressure deficit (VPD), average daily 226 
maximum VPD, average daily clear sky and total solar radiation, and average daily atmospheric 227 
transmittance (cloudiness), all for 1990-2021, from the Parameter-elevation Regressions on 228 
Independent Slopes Model (PRISM) 30-year normal (56); and level IV Ecoregions (57). Further 229 
details about these layers are available in Table S4 of Greenhill et al. (10). We also include land 230 
cover data from the Coastal Change Analysis Program (C-CAP) (58), which has higher native 231 
resolution and is believed to be more accurate than NLCD. Because C-CAP covers only coastal 232 
areas, we retain NLCD. All raster inputs are resampled from their original resolution to match the 233 
resolution of the 0.6 meter NAIP imagery, resulting in 512 by 512 pixel rasters centered at the 234 
location being evaluated, covering an area of approximately 308 by 308 meters. Several raster 235 
input layers are available only in the contiguous US, so we restrict our analysis to this region. We 236 
selected raster input layers based on the datasets that USACE engineers most frequently cited in 237 
the PDF files accompanying AJDs (10). 238 

The 89 tabular features consist of one-hot encoded identifiers for the state and USACE district of 239 
the location being evaluated, the distance to district headquarters, and one-hot encoded information 240 
on the WOTUS rule under which the location’s jurisdictional status is being evaluated. State and 241 
USACE district boundaries have an important influence on jurisdictional rates. Similarly, distance 242 
to district headquarters may influence the likelihood that a site receives a field visit, which may 243 
also affect jurisdictional determinations (10). Including one-hot encoded rule information allows 244 



us to capture differences across rules and produce model predictions for the same locations under 245 
different rules. 246 

Our visual review of spatial patterns in the 4 million prediction points reveals that CLEAR 247 
predictions occasionally display discontinuities within a water body. Investigation indicates that 248 
discontinuities in input layers, typically the National Agricultural Imagery Program (NAIP) (53) 249 
and the Gridded National Soil Survey Geographic Database (gNATSGO) (55) drive these patterns. 250 
In all examples we investigated, the algorithm itself does not generate these discontinuous patterns 251 
except insofar as the inputs have them. The infrequent abrupt changes in NAIP inputs that we 252 
identified reflect cloud cover affecting processing of remote sensing data. gNATSGO combines 253 
the Soil Survey Geographic Database (SSURGO), State Soil Geographic Database version 2, and 254 
the Raster Soil Survey data. Analysts create SSURGO by stitching together soil survey areas. One 255 
survey area may cover one or several entire counties or parts of counties. This stitching process 256 
occasionally produces discrete spatial changes in gNATSGO inputs. 257 

A.6: Agriculture 258 

The CWA excludes prior converted cropland from jurisdiction, but many AJD coordinates fall 259 
within NLCD’s cropland layer. To understand this contrast, an additional analysis manually 260 
investigated a sample of 88 jurisdictional AJDs from Rapanos, NWPR, and Sackett which have 261 
coordinates within NLCD’s cropland layer. For each AJD where a document was available, this 262 
analysis checked the coordinate in the USEPA-USACE tabular data against the coordinate in the 263 
document. This analysis inspected Google Earth imagery from these coordinates and compared 264 
against any maps in the AJD document. This analysis found that only 12.5% of the sample of AJDs 265 
(11 AJDs) within NLCD’s cropland layer represented agricultural activity. For these AJDs, the 266 
AJD documents contained insufficient information to determine why the AJD was jurisdictional 267 
and was not excluded as prior converted cropland. For example, it is possible these sites became 268 
cropland recently so were not “prior.” Of the remaining AJDs, 48.9% were near agriculture but 269 
not on a field (e.g., a pond or house next to cropland), 29.5% appeared to have slight reporting 270 
error in the coordinate, and 9.1% had incorrect labels, as SM A.4 discusses.  271 

A.7: Model Calibration and Decision Threshold Choice 272 

Raw CLEAR model scores have imperfect calibration, i.e., model scores do not reflect the 273 
probability that a point is regulated. To improve model calibration, we fit an isotonic regression 274 
on the training set, then use the fitted isotonic regression model to calibrate out of sample 275 
predictions. This procedure improves model calibration, especially for calibrated probabilities 276 
below 0.6. The Brier score on the test set is 0.178 before calibration and 0.148 after calibration. 277 
For calibrated probabilities above 0.3, the average predicted probability of jurisdiction in each bin 278 
is higher than the observed probability in the test set. 279 

Geophysical models primarily generate binary predictions of whether a site is jurisdictional. Deep 280 
learning models produce continuous model scores, which we calibrate to describe the probability 281 
that a site is regulated. Deep learning models can also generate a binary jurisdictional prediction 282 
indicating whether the site’s calibrated probability exceeds a given threshold (e.g., 0.5). To use all 283 
information from the model, to estimate the share of an area that is jurisdictional, we average 284 
calibrated probabilities rather than averaging binary jurisdictional predictions. 285 



Different stakeholders may value different model performance metrics and may thus prefer 286 
different thresholds for binary jurisdictional classification. AUC aggregates across all possible 287 
thresholds. For other metrics, Table 1 reports model performance for classification thresholds that 288 
differ by performance metric, each chosen to optimize the performance metric. We use the 289 
validation set to choose optimal thresholds. To evaluate the sensitivity of threshold choice to 290 
validation set sampling variation, we implemented threshold selection using five-fold cross 291 
validation and observed minimal variation in the selected thresholds. 292 

Fig. S6 shows how performance metrics vary across decision thresholds in the validation set. 293 
Optimal thresholds are chosen based on performance in the validation set, and then applied to the 294 
test set. Table S13 reports all test set performance metrics at the optimal threshold for each metric. 295 
AUC is invariant to threshold choice. Thresholds near 0.25 optimize F1 score and state MAE. A 296 
lower threshold, 0.17, optimizes national MAE. A decision threshold near 0.50 maximizes overall 297 
accuracy. Much of the threshold domain has flat curves, suggesting that threshold choice has only 298 
a marginal impact on overall performance. Furthermore, during model development we 299 
implemented five-fold cross validation for threshold selection on the validation set and found that 300 
optimal thresholds and the corresponding metrics did not change significantly across folds. 301 

Histograms show the distribution of the calibrated probabilities (fig. S7). CLEAR has high 302 
confidence—–few sites have a score near 50% and most have calibrated probabilities below 20% 303 
or above 80%. To use all information from the model to estimate the share of an area that is 304 
jurisdictional, we average calibrated probabilities rather than averaging binary jurisdictional 305 
predictions. 306 

A.8: Prediction Points 307 

We report model predictions on groups of sites. We randomly select 4 million points across the 308 
contiguous US, using the same set of locations analyzed by Greenhill et al. (10). These are gathered 309 
by dividing the contiguous US into approximately 80,000 0.1 by 0.1 degree grid cells, then 310 
randomly sampling 50 points in each cell. This large number of points allows us to produce high 311 
resolution maps (Fig. 2), case studies (Fig. 3), and report on predicted regulation overall and at 312 
specific locations of interest (table S2). We separately report predictions for streams, wetlands, 313 
agricultural sites, floodplains, developed urban areas, and areas likely to see urban growth in the 314 
future. We identify these areas using NHD (49), NWI (51), the National Land Cover Dataset 315 
(NLCD) (54), and the National Flood Insurance Program (NFIP) (59), and Integrated Climate and 316 
Land Use Scenarios (ICLUS) (60). 317 

We report the mean calibrated probability for the 4 million prediction points and for subsets of 318 
these points in important areas, including within 5 m of NWI wetlands or NHD streams (table S2). 319 
Because we average across points, we interpret these in terms of stream miles and wetland acres. 320 

  321 



B. Supplementary Text 322 

B.1: Geophysical Model Projections  323 

Table S4B presents models using one geophysical input layer at a time to determine jurisdiction. 324 
For example, the presence of hydric soils is often taken as an indicator of historic wetlands (61). 325 
A prediction relying on whether a site has hydric soils has an AUC of only 0.492, which is worse 326 
than the naïve benchmark, and F1 of 0.295. Row 9 shows that a model assuming sites with water 327 
table depth less than 10 m are jurisdictional also performs poorly. The CWA excludes prior 328 
converted cropland and urban developed areas from jurisdiction, so rows 10 and 11 use crop cover 329 
and built-up area classes in the NLCD. Again, these rules perform poorly. 330 

The Connected Wetlands model reported in Table 1 assumes that only NWI wetlands that are 331 
within 50 meters of a NHD stream that terminates in a navigable water are regulated. These 332 
wetlands are uncommon, and thus the Connected model predicts low regulation rates. The 333 
Connected model performs poorly in part due to low predicted regulation.  334 

B.2: Projections Using Probabilities Versus Binary Jurisdictional Predictions 335 

As discussed in the main text, to estimate jurisdiction across groups of sites, Table S2 and Table 336 
S5 average calibrated probabilities. These tables use the calibrated probabilities since binary 337 
jurisdictional predictions discard information by discretizing each site to an indicator for whether 338 
the calibrated probability exceeds a threshold. For example, if all sites in an area had a calibrated 339 
probability of 0.20, averaging the calibrated probabilities would indicate that 20% of sites are 340 
jurisdictional, while averaging the binary jurisdictional predictions would indicate that 0% of sites 341 
are jurisdictional.  342 

To understand the consequences of this choice, we re-estimated Table S5 by averaging the binary 343 
jurisdictional predictions. Averaging the binary predictions would imply that 11.6% of all sites are 344 
jurisdictional under Rapanos and 5.8% under NWPR. These are far below the values that average 345 
calibrated probabilities. Averaging the binary predictions rather than averaging the calibrated 346 
probabilities mostly decreases the estimated share of points that are jurisdictional for NWPR, and 347 
for points without streams or wetlands. This occurs because, as in the example from the previous 348 
paragraph, binary jurisdictional predictions adjust sites with low calibrated probabilities to zero, 349 
but the calibrated probabilities retain some non-zero estimated probability of regulation for such 350 
sites. This also helps explain why Table S5 estimates higher regulation rates for Rapanos and 351 
NWPR than Greenhill et al. (10) do, since they average binary jurisdictional predictions but do not 352 
average calibrated probabilities. 353 



Fig. S1. CLEAR and Relabeled Sackett outperform geophysical models.  
A Receiver operating curves – Sackett   B Precision-recall curves – Sackett  

   
C  Receiver operating curves – comparing rules  D Precision-recall curves – 
comparing rules 

   
(A) and (C) show the Receiver operating curve (ROC), and the Area Under the Curve (AUC). The 
ROC plots the True Positive Rate (share of correctly identified positives) against the False 
Positive Rate (share of negatives incorrectly identified as positive) across all classification 
thresholds. For example, the left-most point corresponds to a threshold above one, predicting no 
positives. The right-most point corresponds to a threshold below zero, predicting all positives. 
CLEAR-Sackett has 69.1% probability of ranking a randomly chosen jurisdictional AJD higher 
than a randomly chosen non-jurisdictional AJD. AUC = 0.5 is random chance, AUC-ROC = 1 is 
perfect. On all rules, CLEAR has a 0.837 AUC. (B) and (D) show the Precision-Recall (PR) Curve 
and the Area Under the Curve (AUCPR). The PR curve plots precision (share of predicted 
positives that are true positives) against recall (share of true positives identified) across all 
classification thresholds. The AUCPR averages precision across all recall levels. A random 
classifier has an AUC-PR of 0.197 since 19.7% of Sackett AJDs are jurisdictional. CLEAR-
Sackett’s AUCPR of 0.402 means the model identifies positive cases with about twice the 
precision as a random classifier, indicating strong performance in detecting jurisdictional AJDs 
despite class imbalance. Across all rules, a random classifier has an AUCPR of 0.325 since 32.5% 
of AJDs are jurisdictional. Also across all rules, CLEAR’s AUCPR of 0.749 means the model 
identifies positive cases with over twice the precision as random guessing, indicating strong 
performance in detecting jurisdictional AJDs despite class imbalance. The PR curves focus on 
positive-class performance and are more informative under class imbalance. Curves are 
constructed by using all unique calibrated model scores as thresholds. All curves are independent 



of any chosen classification cutoff. Because Gold (22), Connected, and the Naïve models have 
binary model scores, these are plotted as points rather than lines.  
  



 

 

Fig. S2. NWI Wetness values for Sackett AJDs noisily measure jurisdiction. 

 
NWI “Water Regime” values differ across both non-jurisdictional and jurisdictional Sackett AJDs. 
Some jurisdictional AJDs have relatively low wetness, and some non-jurisdictional AJDs have 
relatively high wetness. This figure plots the water regime value, which describes “Wetness” in 
Gold (22) scenarios, for all 322 Sackett AJDs that fall within a NWI polygon in Gold (22). Dark 
blue bars display non-jurisdictional AJDs; light orange bars display jurisdictional AJDs. SD is 
standard deviation.

  



Fig. S3. Maps show large spatial differences in regulation across rules and models.  
A CLEAR-Sackett  – CLEAR-Rapanos  

 
B  Relabeled Sackett – CLEAR-Sackett     C March 2025 Guidance – Relabeled Sackett  

    
D Energy Emergency EO – CLEAR-Sackett    E CLEAR-Sackett  – CLEAR-NWPR  

    
Brown represents newly deregulated, blue represents newly regulated. Maps show: (A), changes from 
CLEAR-Rapanos to CLEAR-Sackett; (B), CLEAR-Sackett to Relabeled Sackett; (C), Relabeled Sackett to 
March 2025 Guidance, since both relabel NWPR AJDs; (D), CLEAR-Sackett to Energy Emergency 
Executive Order (EO); and (E), CLEAR-NWPR to CLEAR-Sackett. Maps aggregate the four million 



prediction points by taking the mean model score in 5 km by 5 km grid cells (~8 prediction points per grid 
cell). 



Fig. S4. Case studies show differences across rules and spatial patterns of jurisdiction. 
         CLEAR-NWPR                  March 2025 Guidance             Wetness 
A  Upper Peninsula Wetlands, Michigan 

           
B Holly Shelter Game Area, North Carolina 

           
C  Colorado River south of Moab, Utah 

           
D  Flathead Lake, Flathead Forest, and Hungry Horse Reservoir, Montana 

           

 
Columns show calibrated model scores for prediction points under three different models, two deep 
learning and one geophysical. The first column shows CLEAR-NWPR, the second column shows the 



March 2025 guidance, and the third column shows the Wetness (22) model (seasonally flooded 
scenario). The Wetness model only shows prediction points within wetlands used in Gold (22, 30) which 
lack information for most prediction points. (A), Lakes and wetlands in the Upper Peninsula of Michigan. 
CLEAR-NWPR and the March Guidance predict little jurisdiction for surrounding wetlands, and the 
Wetness model predicts jurisdiction for different surrounding wetlands and information for many points. 
(B), Holly Shelter Game Area, North Carolina. CLEAR-NWPR classifies most points as jurisdictional in 
this coastal outdoor recreation area. The March Guidance predicts less jurisdiction for most points in the 
region, and the Wetness model predicts little jurisdiction. (C), Colorado River and ephemeral streams 
south of Moab, Utah. CLEAR-NWPR and the March Guidance predict no jurisdiction for ephemeral 
streams upstream of the river, the Wetness model has no information for any points. (D), Flathead Lake, 
Flathead Forest, and Hungry Horse Reservoir, Montana. CLEAR-NWPR and the March Guidance 
classify the lake in the southwest corner and the reservoir in the northeast corner as jurisdictional, but do 
not regulate the Flathead Forest. The Wetness model has almost no information on sites in the area.  

  



Fig. S5. Synthetic and true training data span most US regions.  
A Synthetic jurisdictional points    B Synthetic non-jurisdictional points 

   
C  True AJDS        D Sackett AJDs  

  
    
E Rapanos AJDs        F NWPR AJDs  

   
G CWR AJDs        H True AJDs, by split  

   

(A), synthetic jurisdictional AJDs and (B), synthetic non-jurisdictional AJDs, both colored by water resource 
type. (C), true (non-synthetic) AJDs, colored by label. (D)-(G) separate true AJDs by rule. (H) colors true 
AJDs by split. Lines in (A)-(F) show states; lines in (H) show Army Corps (USACE) districts.  



 

Fig. S6. Jurisdictional thresholds optimize model performance for each metric.  
 A  F1-Score, Precision, Recall, and Specificity 

 
B  Accuracy, Overall Mean Absolute Error (MAE), and State MAE 

 

 

The CLEAR-Sackett model predicts a site as jurisdictional if its calibrated probability exceeds the relevant 
threshold. The y-axis in each graph shows the model’s performance on the metric of interest if the model 
uses the threshold indicated on the x-axis. Each line with markers shows a different performance metric. 
(A), the blue line with circles shows F1; the red line with squares shows recall; the purple line with triangles 
shows precision; and the brown line with inverted triangles shows specificity. The vertical dashed blue line 
shows the threshold which maximizes F1. (B), the orange line with circles shows accuracy, the green line 
with squares shows MAE, and the pink line with triangle shows state MAE. Each vertical line shows the 
threshold which maximize the performance metric with matching color (e.g., the dashed green line shows 
the threshold which maximizes MAE, which is also shown in green). The horizontal dashed lines show 
performance of a naïve benchmark that assumes no sites are jurisdictional.



Fig. S7. Distribution of calibrated probabilities of regulation differ by rule and sample, though 
concentrate below 0.2 or over 0.8. 

A CLEAR-Sackett – 4 million points   B CLEAR-Sackett – test set 

    

C CLEAR-Rapanos – 4 million points  D CLEAR-Rapanos – test set 

   

  

E CLEAR-NWPR – 4 million points   F CLEAR-NWPR – test set 

   

(continued next page) 



(continued from previous page) 

G Relabeled Sackett – 4 million points  H Relabeled Sackett – test set 

   

I CLEAR-CWR – 4 million points   J CLEAR-CWR – test set 

   

For each rule and for either the 4 million prediction points or the test set, each graph shows the share of 
points with a calibrated probability in one of five evenly sized bins spanning 0.0 to 1.0. Across all rules, and 
in both the 4 million random prediction points and the test set, around 90 percent of sites have calibrated 
probabilities below 0.2 or above 0.8, indicating that the model has high confidence. The test set has higher 
jurisdictional probabilities than the 4 million random prediction points because AJDs disproportionately 
represent sites with potential water resources.  
  



Fig. S8. Relabeling captures Sackett’s deregulation of areas with concentrated ecosystem 
services and relevant to CWA goals, and March Guidance further deregulates these areas. 
A  Drinking water sources  B Floodplains 

  
C  Polluted waters    D Fish habitat conditions 

  
(A) Share of points in drinking water source areas. (B) Share of points in floodplains. (C) Proportion of 
assessed waters considered “impaired” based on ambient pollution and relevant standards. (D) Fish habitat 
condition score. Each panel splits 4 million random points into the 251,975 5km by 5 km grid cells used to 
plot Fig. 2. In each graph, the y-axis shows the mean calibrated probability from CLEAR-NWPR, Relabeled 
Sackett, and the March 2025 Guidance, and the x-axis shows the mean value within the grid cell. The x-
axis divides grid cells into equal-width bins (0-1 scale) based on underlying values. The legend shows the 
grid-level regression coefficient with standard errors in parentheses. Impaired waters and fish habitat 
conditions measured by 12-digit hydrologic unit code (HUC12) from the EPA’s 2025 Restoration and 
Protection Indicator Database. 
  



Table S1. Relabeling NWPR AJDs allows training of Relabeled Sackett and March 2025 Guidance 
models.  
      Jurisdictional under 

  Definition 
Share of 

AJDs NWPR 
Relabeled 
Sackett 

March 
2025 

Guidance 
  (1) (2) (3) (4) (5) 

A1TNW10 

(a)(1) Water is also subject to Sections 9 or 10 of the 
Rivers and Harbors Act - RHA Tidal water is subject to 
the ebb and flow of the tide 0.0035 Yes Yes Yes 

A1TNWCOMM 

(a)(1) Water is currently used, was used in the past, or 
may be susceptible to use in interstate or foreign 
commerce (CWA Section 404 only) 0.00067 Yes Yes Yes 

A1TNWFED 
(a)(1) A federal court has determined the water is 
navigable in fact under federal law 0.00011 Yes Yes Yes 

A1TNWSEAS (a)(1) Territorial Seas 6.4E-05 Yes Yes Yes 

A2TRIBINT 

(a)(2) Intermittent tributary contributes surface water 
flow directly or indirectly to an (a)(1) water in a typical 
year 0.072 Yes Yes Yes 

A2TRIBPER 
(a)(2) Perennial tributary contributes surface water flow 
directly or indirectly to an (a)(1) water in a typical year 0.039 Yes Yes Yes 

A3LPIFLOOD 

(a)(3) Lake/pond or impoundment of a jurisdictional 
water inundated by flooding from an (a)(1)-(a)(3) water 
in a typical year 0.0013 Yes Yes Yes 

A3LPIFLOW 

(a)(3) Lake/pond or impoundment of a jurisdictional 
water contributes surface water flow directly or indirectly 
to an (a)(1) water in a typical year 0.0057 Yes Yes Yes 

A4WETABUT (a)(4) Wetland abuts an (a)(1)-(a)(3) water 0.11 Yes Yes Yes 

A4WETARTSEP 

(a)(4) Wetland separated from an (a)(1)-(a)(3) water 
only by an artificial structure allowing a direct 
hydrologic surface connection between the wetland 
and the (a)(1)-(a)(3) water in a typical year 0.0076 Yes No No 

A4WETFLOOD 
(a)(4) Wetland inundated by flooding from an (a)(1)-
(a)(3) water in a typical year 0.0081 Yes Yes No 

A4WETNATSEP 
(a)(4) Wetland separated from an (a)(1)-(a)(3) water 
only by a natural feature 0.0027 Yes No No 

B10STORM 

(b)(10) Stormwater control feature constructed or 
excavated in upland or in a non-jurisdictional water to 
convey, treat, infiltrate, or store stormwater runoff 0.02 No No No 

B11REUSE 

(b)(11) Groundwater recharge, water reuse, or a 
wastewater recycling structure constructed or 
excavated in upland or in a non-jurisdictional water 0.00024 No No No 

B12WTS (b)(12) Waste treatment system 0.0018 No No No 

 (Continued next page) 
  



Table S1. Relabeling NWPR AJDs allows training of Relabeled Sackett and March 2025 Guidance 
models. (Continued) 
      Jurisdictional under 

  Definition 

Share 
of 

AJDs NWPR 
Relabeled 
Sackett 

March 
2025 

Guidance 
  (1) (2) (3) (4) (5) 

B1EXCLUDEDOTH 

(b)(1) Water or water feature that is not identified in 
(a)(1)-(a)(4) and does not meet the other (b)(1) sub-
categories 0.011 No No No 

B1LPINOSCFLD 

(b)(1) Lake/pond or impoundment that does not 
contribute surface water flow directly or indirectly to 
an (a)(1) water and is not inundated by flooding from 
an (a)(1)-(a)(3) water in a typical year 0.014 No No No 

B1SWCNOSC 

(b)(1) Surface water channel that does not contribute 
surface water flow directly or indirectly to an (a)(1) 
water in a typical year 0.0078 No No No 

B1WETNONADJ (b)(1) Non-adjacent wetland 0.31 No No No 

B2GRNDWATER 
(b)(2) Groundwater, including groundwater drained 
through subsurface drainage systems 0.00011 No No No 

B3EPHEMERAL 
(b)(3) Ephemeral feature, including an ephemeral 
stream, swale, gully, rill, or pool 0.22 No No No 

B4SHEETFLOW 
(b)(4) Diffuse stormwater run-off over upland or 
directional sheet flow over upland 0.0016 No No No 

B5DITCH 

(b)(5) Ditch that is not an (a)(1) or (a)(2) water, and 
those portions of a ditch constructed in an (a)(4) 
water that do not satisfy the conditions of (c)(1) 0.094 No No No 

B6PCC (b)(6) Prior converted cropland 0.0053 No No No 

B7ARTIRR 

(b)(7) Artificially irrigated area, including fields flooded 
for agricultural production, that would revert to upland 
should application of irrigation water to that area 
cease 0.0013 No No No 

B8LPIART 

(b)(8) Artificial lake/pond constructed or excavated in 
upland or a non-jurisdictional water, so long as the 
artificial lake or pond is not an impoundment of a 
jurisdictional water that meets (c)(6) 0.028 No No No 

B9DEPPIT 

(b)(9) Water-filled depression constructed/excavated 
in upland/non-jurisdictional water incidental to 
mining/construction or pit excavated in upland/non-
jurisdictional water to obtain fill/sand/gravel 0.0058 No No No 

DRYLAND 

The review area is comprised entirely of dry land (i.e. 
There are no waters or water features, including 
wetlands, of any kind in the entire review area) 0.034 No No No 

RHA10NAV 
RHA Non-tidal water is on the district's Section 10 
waters list 0.00045 No No No 

(Continued next page) 



Table S1. Relabeling NWPR AJDs allows training of Relabeled Sackett and March 2025 Guidance 
models. (Continued) 
      Jurisdictional under 

  Definition 
Share of 

AJDs NWPR 
Relabeled 
Sackett 

March 
2025 

Guidance 
  (1) (2) (3) (4) (5) 

RHAB10STORM 

Rivers and Harbors Act Section 10 water 
excluded from the CWA as a (b)(10) 
stormwater control feature constructed or 
excavated in upland or in a non-
jurisdictional water to convey, treat, 
infiltrate, or store stormwater runoff 0.00010 No No No 

RHAB1EXCLUDEDOTH 

Rivers and Harbors Act Section 10 water 
excluded from the CWA as a (b)(1) water 
or water feature that is not identified in 
(a)(1)-(a)(4) and does not meet the other 
(b)(1) sub-categories 0.000016 No No No 

RHAB1LPINOSCFLD 

Rivers and Harbors Act Section 10 water 
excluded from the CWA as a (b)(1) 
lake/pond or impoundment that does not 
contribute surface water flow directly or 
indirectly to an (a)(1) water and is not 
inundated by flooding from an (a)(1)-
(a)(3) water in a typical year 0.000016 No No No 

RHAB1WETNONADJ 

Rivers and Harbors Act Section 10 water 
excluded from the CWA as a (b)(1) non-
adjacent wetland 0.0014 No No No 

RHAB3EPHEMERAL 

Rivers and Harbors Act Section 10 water 
excluded from the CWA as a (b)(3) 
ephemeral feature, including an 
ephemeral stream, swale, gully, rill, or 
pool 0.00032 No No No 

RHAB6PCC 

Rivers and Harbors Act Section 10 water 
excluded from the CWA as (b)(6) prior 
converted cropland 0.000016 No No No 

RHATIDAL 
RHA Tidal water is subject to the ebb and 
flow of the tide 0.00075 No No No 

Each row describes one NWPR resource type. Relabeled Sackett or March 2025 Guidance relabel 
resource types appear in bold. Column (2) shows non-synthetic AJDs for each resource type as a share of 
all NWPR AJDs.



 
Table S2. CLEAR and ex ante models project that Sackett regulates relatively few water resources. 

 
Values represent share of points regulated. Columns (4)-(7) average calibrated probabilities. Column (1) 
describes a naïve model where no points are jurisdictional. Column (2) describes the median scenario from 
the original wetness model (22), “seasonally flooded.” Column (3) defines points as jurisdictional in NWI 
polygons within 50 m of an NHD flowline terminating in navigable waters. Column (4) describes Relabeled 
Sackett, which relabels resource types in NWPR AJDs. Column (5) describes ex post CLEAR-Sackett. 
Column (6) describes the January 2025 Energy Emergency Executive Order, by deregulating CLEAR-
Sackett predictions around energy infrastructure. Column (7) describes the March 2025 Guidance, by 
relabeling NWPR resource types. (B)-(E) describe subsets of the four million prediction points. NHD 
includes areas within 5 m of perennial, intermittent, and ephemeral flowline feature codes (fcodes) 46006, 
46003, and 46007. Non-tidal wetlands include wetlands analyzed in the original wetness model (30). NHD 
is National Hydrography Dataset, NWI is National Wetlands Inventory, NLCD is National Land Cover 
Dataset, NFIP is National Insurance Program, ICLUS is Integrated Climate and Land-Use Scenarios, DL 
is deep learning.  
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Table S3. Ex ante and ex post deep learning outperform different wetness scenarios  

              
Mean 

absolute error 

  
AUC F1 Precision Recall Specificity Accuracy US State 
(1) (2) (3) (4) (5) (6) (7) (8) 

A All sites (N=2,777)                 
1 Temporarily flooded 0.499 0.021 0.167 0.011 0.987 0.794 0.184 0.254 
2 Seasonally 
saturated 0.501 0.021 0.214 0.011 0.990 0.797 0.187 0.256 
3 Continuously 
saturated 0.498 0.007 0.118 0.004 0.993 0.798 0.191 0.258 
4 Seasonally flooded 0.498 0.007 0.118 0.004 0.993 0.798 0.191 0.258 
5 Seasonally 
flooded/saturated 0.498 0.004 0.083 0.002 0.995 0.799 0.193 0.259 
6 Semi-permanently 
flooded 0.500 0.004 0.250 0.002 0.999 0.802 0.196 0.262 
7 Intermittently 
exposed 0.501 0.004 0.500 0.002 1.000 0.803 0.197 0.264 
8 Permanently 
flooded 0.501 0.004 0.500 0.002 1.000 0.803 0.197 0.264 
9 Naïve  0.500 0.000 0.000 0.000 1.000 0.803 0.197 0.265 
10 Connected 0.500 0.000 0.000 0.000 1.000 0.803 0.197 0.265 
11 Relabeled Sackett 0.693 0.332 0.457 0.261 0.940 0.802 0.066 0.166 
12 CLEAR-Sackett 0.691 0.368 0.502 0.290 0.973 0.819 0.001 0.182 
                  
B Non-tidal NWI (Emergent, Forested, Pond) 
(N=640)           
1 Temporarily flooded 0.502 0.030 0.250 0.016 0.988 0.800 0.181 0.244 
2 Seasonally 
saturated 0.503 0.031 0.286 0.016 0.990 0.802 0.183 0.245 
3 Continuously 
saturated 0.496 0.000 0.000 0.000 0.992 0.800 0.188 0.248 
4 Seasonally flooded 0.496 0.000 0.000 0.000 0.992 0.800 0.188 0.248 
5 Seasonally 
flooded/saturated 0.497 0.000 0.000 0.000 0.994 0.802 0.189 0.250 
6 Semi-permanently 
flooded 0.500 0.000 0.000 0.000 1.000 0.806 0.194 0.248 
7 Intermittently 
exposed 0.500 0.000 0.000 0.000 1.000 0.806 0.194 0.248 
8 Permanently 
flooded 0.500 0.000 0.000 0.000 1.000 0.806 0.194 0.248 
9 Naïve  0.500 0.000 0.000 0.000 1.000 0.806 0.194 0.248 
10 Connected 0.500 0.000 0.000 0.000 1.000 0.806 0.194 0.248 
11 Relabeled Sackett 0.703 0.370 0.487 0.298 0.948 0.820 0.056 0.154 
12 CLEAR-Sackett 0.724 0.424 0.568 0.339 0.969 0.825 0.003 0.175 

(Continued next page) 



Table S3. Ex ante and ex post deep learning outperform different wetness scenarios (continued) 

 

              

Mean 
absolute 

error 

  
AUC F1 Precision Recall Specificity Accuracy US State 
(1) (2) (3) (4) (5) (6) (7) (8) 

C Non-tidal wetlands (30) 
(N=36)               
1 Temporarily flooded 0.500 0.286 0.167 1.000 0.000 0.167 0.833 0.823 
2 Seasonally 
saturated 0.633 0.353 0.214 1.000 0.267 0.389 0.611 0.504 
3 Continuously 
saturated 0.417 0.174 0.118 0.333 0.500 0.472 0.306 0.361 
4 Seasonally flooded 0.417 0.174 0.118 0.333 0.500 0.472 0.306 0.361 
5 Seasonally 
flooded/saturated 0.400 0.111 0.083 0.167 0.633 0.556 0.167 0.302 
6 Semi-permanently 
flooded 0.533 0.200 0.250 0.167 0.900 0.778 0.056 0.218 
7 Intermittently 
exposed 0.567 0.250 0.500 0.167 0.967 0.833 0.111 0.177 
8 Permanently 
flooded 0.567 0.250 0.500 0.167 0.967 0.833 0.111 0.177 
9 Naïve  0.500 0.000 0.000 0.000 1.000 0.833 0.167 0.177 
10 Connected 0.500 0.000 0.000 0.000 1.000 0.833 0.167 0.177 
11 Relabeled Sackett 0.819 0.200 0.250 0.167 0.933 0.806 0.000 0.149 
12 CLEAR-Sackett 0.947 0.625 0.500 0.833 0.967 0.917 0.139 0.250 

MAE: mean absolute error in predicted share jurisdictional in US or state. AUC-ROC: Area under the 
receiver operating curve. F1: harmonic mean of precision and recall. Precision: TP / (TP + FP), where TP 
is the count of true positive predictions and FP is the count of false positive predictions. Recall: TP / (TP + 
FN), where FN is the count of false negative predictions. Specificity: TN / (TN + FP), where TN is the count 
of true negative predictions. Accuracy: percent correct. Column (7) equals |mean(𝐽!) − mean(𝐶!)|, where 𝐽! 
represents AJD jurisdiction and 𝐶! represents jurisdiction of Clean Water Act Analysis of Regulation 
(CLEAR) predictions. Column (8) equals (1/S)∑ |𝑚𝑒𝑎𝑛!(𝐽!") 	−	𝑚𝑒𝑎𝑛!(𝐶!")|" , i.e., the mean across states 
of the mean jurisdiction rate of validation Approved Jurisdictional Determinations (AJDs) within each state 
minus the mean jurisdiction rate of model predictions. Each panel describes jurisdiction predicted by 
scenarios analyzed in Gold (30). Each scenario indicates how "wet" a wetland must be to be protected 
under the Clean Water Act. In other words, in scenario 4, all AJDs within wetlands (30) at least as wet as 
"seasonally flooded" are predicted as WOTUS; all others are predicted as non-WOTUS. The median 
scenario ex-ante, Scenario 4, is used as the wetness model throughout the rest of the paper. (A), N=2,777. 
(B), N=640. (C), N=36. 



 

 

Table S4. For all rules, CLEAR performs well but individual input layers perform poorly.  
 

              

Mean 
absolute 

error   
  AUC F1 Precision Recall Specificity Accuracy US State N 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
A CLEAR model, by rule                   
  1. All rules 0.837 0.665 0.787 0.575 0.925 0.811 0.088 0.132 20,844 
  2. Sackett 0.691 0.368 0.502 0.290 0.973 0.819 0.001 0.182 2,777 
  3. Rapanos 0.864 0.761 0.737 0.786 0.889 0.819 0.005 0.095 10,187 
  4. NWPR 0.805 0.603 0.561 0.652 0.947 0.801 0.010 0.120 6,373 
  5. CWR 0.856 0.748 0.756 0.740 0.843 0.802 0.101 0.131 1,507 
                    
B Individual input layers—Sackett                   
  5. Wetland (NWI) 0.502 0.253 0.199 0.349 0.655 0.595 0.148 0.198 2,777 
  6. Stream (NHD) 0.492 0.058 0.146 0.036 0.948 0.768 0.148 0.230 2,777 
  7. Wetland or stream 0.499 0.253 0.196 0.354 0.644 0.587 0.158 0.205 2,777 
  8. Hydric soil (gNATSGO) 0.492 0.295 0.194 0.624 0.361 0.413 0.439 0.384 2,777 
  9. Water table <10m (gNATSGO) 0.506 0.327 0.200 0.898 0.115 0.269 0.690 0.637 2,777 
  10. Cropland and pasture (NLCD) 0.496 0.308 0.195 0.728 0.263 0.355 0.538 0.485 2,777 
  11. Urban developed (NLCD) 0.491 0.303 0.193 0.701 0.281 0.364 0.518 0.479 2,777 

 
(A), performance of CLEAR calibrated probabilities with thresholds optimized for performance for F1 in columns (2), (3), and (4), accuracy in 
columns (5) and (6), national mean absolute error (MAE) in column (7), and state MAE in column (8). Column (1) depends on model calibrated 
probabilities and is independent of threshold choice. (B), forecasting based on individual layers on for Sackett AJDs. MAE: mean absolute 
error in predicted share jurisdictional in US or state. AUC-ROC: Area under the receiver operating curve. F1: harmonic mean of precision and 
recall. Precision: TP / (TP + FP), where TP is the count of true positive predictions and FP is the count of false positive predictions. Recall: 
TP / (TP + FN), where FN is the count of false negative predictions. Recall is not defined if a model makes no positive predictions. Specificity: 
TN / (TN + FP), where TN is the count of true negative predictions. Accuracy: percent correct. Column (7) equals |mean(𝐽!) − mean(𝐶!)|, where 
𝐽! represents AJD jurisdiction and 𝐶! represents jurisdiction of Clean Water Act Analysis of Regulation (CLEAR) predictions. Column (8) equals 
(1/S)∑ |𝑚𝑒𝑎𝑛!(𝐽!") 	−	𝑚𝑒𝑎𝑛!(𝐶!")|" ,	, i.e., the mean across states of the mean jurisdiction rate of test set Approved Jurisdictional 
Determinations (AJDs) within each state minus the mean jurisdiction rate of CLEAR model predictions. Row 5 predicts regulation if within 5 
m of a NWI wetland; row 6 if within 5 m of an NHD stream; row 7 if within 5 m of either an NWI wetland or NHD stream; row 8 if the area has 
a hydric soil according to the Gridded National Soil Survey Geographic Database (gNATSGO). Row 9 predicts no regulation if the water table 
is less than 10 meters deep, and regulation everywhere else. Rows 10 and 11 predict no regulation in cropland and pasture, and urban 



 

 

developed areas, respectively, and regulation everywhere else. NWPR is the Navigable Waters Protection Rule. CWR is the Clean Water 
Rule. 



 

 

Table S5. Wetness models project a wide range of jurisdiction. 

  
1 

Temporarily 
flooded 

2 
Seasonally 
saturated 

3 
Continuously 

saturated 

4 
Seasonally 

flooded 

5 
Seasonally 

flooded 
/saturated 

6 Semi-
permanently 

flooded 

7 
Intermittently 

exposed 

8 
Permanently 

flooded 

  (1) (2) (3) (4) (5) (6) (7) (8) 
A General groups of points                 
  All 4 million points 0.049 0.036 0.030 0.026 0.010 0.008 0.003 0.003 
  AJD test set 0.013 0.01 0.006 0.006 0.004 0.001 0.001 0.001 
                  
B Rivers and streams                 
  All (NHD all) 0.129 0.077 0.070 0.067 0.020 0.012 0.003 0.003 
  Perennial  0.221 0.139 0.126 0.122 0.040 0.020 0.005 0.005 
  Intermittent or ephemeral  0.075 0.039 0.034 0.033 0.005 0.004 0.000 0.000 
  None (not in NHD) 0.047 0.036 0.030 0.025 0.010 0.008 0.003 0.003 
                  
C Wetlands                 
  All (NWI palustrine) 0.307 0.231 0.192 0.165 0.069 0.052 0.019 0.019 
  Non-tidal wetlands(30) 0.994 0.742 0.622 0.524 0.213 0.163 0.059 0.059 
  Emergent (NWI) 0.546 0.401 0.376 0.348 0.118 0.099 0.013 0.013 
  Forested (NWI) 0.711 0.534 0.412 0.330 0.122 0.077 0.007 0.007 
  None (not in NWI 
palustrine) 0.004 0.002 0.002 0.001 0.000 0.000 0.000 0.000 
                  
D Rivers, streams, and wetlands               
  All (NWI all, NHD all) 0.300 0.226 0.188 0.161 0.067 0.051 0.019 0.018 
  None (not in NWI or NHD) 0.003 0.002 0.002 0.001 0.000 0.000 0.000 0.000 
                  
E Other important groups of points               
  Cropland and pasture 
(NLCD) 0.016 0.009 0.008 0.008 0.003 0.002 0.002 0.002 
  Floodplains (NFIP) 0.276 0.198 0.181 0.179 0.085 0.078 0.033 0.033 
  Urban growth areas 
(ICLUS) 0.034 0.023 0.018 0.017 0.005 0.004 0.002 0.002 
  Urban developed (NLCD) 0.012 0.008 0.007 0.007 0.002 0.001 0.001 0.001 

Each column shows one scenario from the Wetness model (22). Table shows the share of points 
each framework estimates are regulated. Panels B through D describe subsets of the four million 
prediction points. NHD only refers to flowlines. NFIP is the National Flood Insurance Program and 
ICLUS is the Integrated Climate and Land Use Scenarios.  



 

 

 

Table S6. Sackett regulates less than earlier CWA rules.  

  CWR 
 

Rapanos  NWPR  Sackett 
  (1) (2) (3) (4) 
A General groups of points         
  All 4 million points 0.230 0.179 0.138 0.115 
  AJD test set 0.402 0.383 0.246 0.161 
          
B Rivers and streams         
  All (NHD all) 0.524 0.463 0.427 0.249 
  Perennial  0.713 0.615 0.602 0.347 
  Intermittent or ephemeral  0.373 0.336 0.287 0.137 
  None (not in NHD) 0.225 0.173 0.133 0.112 
          
C Wetlands         
  All (NWI palustrine) 0.567 0.410 0.351 0.278 
  Non-tidal wetlands(30) 0.689 0.463 0.389 0.318 
  Emergent (NWI) 0.509 0.343 0.234 0.199 
  Forested (NWI) 0.702 0.455 0.400 0.284 
  None (not in NWI palustrine) 0.172 0.139 0.101 0.087 
          
D Rivers, streams, and wetlands         
  All (NWI all, NHD all) 0.561 0.407 0.349 0.275 
  None (not in NWI or NHD) 0.171 0.138 0.100 0.086 
          
E Other important groups of points         
  Cropland and pasture (NLCD) 0.147 0.124 0.098 0.082 
  Floodplains (NFIP) 0.611 0.459 0.386 0.333 
  Urban growth areas (ICLUS) 0.244 0.169 0.135 0.093 
  Urban developed (NLCD) 0.211 0.139 0.110 0.087 

Table shows the share of points each framework estimates are regulated. Columns (1)-(4) 
average calibrated probabilities from CLEAR. Column (1) describes regulation under the Clean 
Water Rule (CWR). Column (2) describes regulation under Rapanos. Column (3) describes 
regulation under NWPR. Column (4) duplicates column (5) from Table S2. (B)-(D) describe 
subsets of the four million prediction points. NHD only refers to flowlines. NFIP is the National 
Flood Insurance Program and ICLUS is the Integrated Climate and Land Use Scenarios. 

 
  



 

 

 
Table S7. Regulated stream miles and wetland acres, by state.  
 
      Stream Miles Regulated Wetland Acres Regulated 

State 

Total 
Stream 
Miles 

Total 
Wetland 
Acres 

Rapanos 
(%) 

Sackett 
(%) 

Difference 
Sackett - 
Rapanos 

Rapanos 
(%) 

Sackett 
(%) 

Difference 
Sackett - 
Rapanos 

(1) (2) (2) (3) (4) (5) (6) (7) (8) 
National 3,154,478 119,825,265 - - -705,047 - - -19,321,637 
                  
Alabama 72,650 4,043,348 0.49 0.35 -10,752 0.41 0.38 -109,170 
Arizona 139,281 262,281 0.16 0.09 -9,610 0.32 0.18 -36,457 
Arkansas 78,496 2,558,428 0.48 0.25 -18,525 0.39 0.30 -235,375 
California 173,028 2,789,804 0.40 0.15 -42,565 0.39 0.15 -694,661 
Colorado 93,255 1,522,952 0.28 0.14 -13,056 0.25 0.13 -184,277 
Connecticut 5,215 304,750 0.94 0.41 -2,717 0.84 0.19 -196,259 
Delaware 2,234 290,940 0.79 0.30 -1,097 0.59 0.30 -84,954 
Florida 22,385 12,681,770 0.76 0.60 -3,604 0.68 0.45 -2,916,807 
Georgia 64,833 6,396,737 0.45 0.36 -5,381 0.28 0.27 -6,397 
Idaho 94,753 1,119,249 0.45 0.38 -6,254 0.51 0.33 -194,749 
Illinois 67,074 1,271,986 0.60 0.18 -27,970 0.56 0.21 -443,923 
Indiana 24,066 1,008,100 0.51 0.16 -8,543 0.29 0.13 -160,288 
Iowa 67,717 1,014,174 0.62 0.17 -30,473 0.45 0.14 -323,522 
Kansas 118,236 1,349,856 0.30 0.11 -23,293 0.24 0.09 -206,528 
Kentucky 45,616 430,781 0.17 0.09 -3,786 0.23 0.16 -27,139 
Louisiana 43,096 8,092,819 0.59 0.59 -259 0.64 0.68 283,249 
Maine 24,974 2,569,961 0.73 0.18 -13,961 0.63 0.14 -1,256,711 
Maryland 10,263 863,198 0.88 0.43 -4,680 0.80 0.44 -308,162 
Massachusetts 7,273 775,106 0.75 0.23 -3,767 0.54 0.15 -302,291 
Michigan 47,861 7,712,081 0.86 0.36 -24,122 0.68 0.32 -2,814,909 
Minnesota 60,103 9,973,334 0.16 0.13 -1,623 0.09 0.09 -9,973 
Mississippi 77,386 4,534,181 0.40 0.32 -5,881 0.38 0.45 321,927 
Missouri 95,347 1,388,966 0.63 0.16 -44,813 0.43 0.18 -352,797 
Montana 166,847 1,589,844 0.28 0.23 -8,843 0.30 0.20 -163,754 
Nebraska 72,506 549,755 0.33 0.14 -13,269 0.30 0.14 -87,961 
Nevada 143,616 1,003,174 0.33 0.11 -30,878 0.44 0.18 -258,819 
New Hampshire 9,374 384,706 0.71 0.19 -4,790 0.55 0.12 -163,115 
New Jersey 7,128 1,019,092 0.90 0.40 -3,557 0.73 0.30 -440,248 
New Mexico 109,260 383,873 0.11 0.10 -983 0.14 0.12 -9,213 
New York 48,756 2,651,158 0.67 0.21 -22,428 0.43 0.13 -816,557 
 (Continued next page)  



 

 

Table S7. Regulated stream miles and wetland acres, by state. (Continued) 
 
North Carolina 56,673 4,679,517 0.92 0.50 -23,916 0.84 0.50 -1,600,395 
North Dakota 59,514 2,442,160 0.45 0.24 -12,379 0.18 0.11 -180,720 
Ohio 54,736 715,219 0.36 0.11 -13,465 0.27 0.13 -99,415 
Oklahoma 75,615 1,274,713 0.67 0.19 -35,766 0.56 0.22 -432,128 
Oregon 102,984 1,803,096 0.46 0.26 -20,185 0.50 0.22 -497,655 
Pennsylvania 51,477 588,835 0.77 0.31 -23,782 0.72 0.35 -219,047 
Rhode Island 978 86,061 0.88 0.19 -679 0.64 0.14 -43,203 
South 
Carolina 29,372 4,238,935 0.82 0.48 -9,898 0.67 0.39 -1,191,141 
South Dakota 96,965 3,529,693 0.54 0.24 -29,283 0.27 0.13 -465,919 
Tennessee 59,244 1,148,777 0.26 0.13 -7,820 0.36 0.23 -153,936 
Texas 176,194 5,551,483 0.56 0.25 -54,973 0.59 0.36 -1,276,841 
Utah 82,724 624,397 0.44 0.15 -23,494 0.37 0.24 -83,045 
Vermont 7,100 287,628 0.47 0.11 -2,542 0.29 0.09 -56,375 
Virginia 49,280 1,682,396 0.83 0.43 -19,909 0.79 0.55 -408,822 
Washington 68,964 1,297,395 0.42 0.23 -13,034 0.45 0.29 -206,286 
West Virginia 30,572 81,858 0.40 0.13 -8,193 0.57 0.19 -30,942 
Wisconsin 53,370 7,610,528 0.34 0.23 -5,550 0.14 0.13 -22,832 
Wyoming 106,082 1,646,169 0.25 0.17 -8,699 0.25 0.16 -153,094 

 
Total stream miles in column (2) is from NHD stream and river flowline features. Total wetland 
acres in column (3) is from NWI. Regulation rates in columns (3), (4), (6), and (7) display 
calibrated probabilities from CLEAR-Sackett and CLEAR-Rapanos, applied to the subset of four 
million prediction points that are within 5 meters of NHD or NWI features. The difference in 
column (5) is measured in stream miles, and in column (8) in wetland acres. 
 
 
 
 
 
  



 

 

 
Table S8. Recent rules deregulate drinking water sources.  
 

  
CLEAR-
Rapanos   

CLEAR-
NWPR   

CLEAR-
Sackett   

Energy 
EO   

March 
2025 

Guidance 
  (1)   (2)   (3)   (4)   (5) 
A Share Regulated                   
  1. All points 0.243   0.187   0.144   0.141   0.156 
  2. NHD or NWI points 0.523   0.448   0.366   0.361   0.404 
  3. NHD points 0.628   0.578   0.350   0.340   0.468 
  4. NWI points 0.525   0.449   0.369   0.364   0.407 
                    
B Pop. Served 
Weighted                   
  1. All points 0.262   0.180   0.139   0.136   0.150 
  2. NHD or NWI points 0.593   0.463   0.391   0.384   0.429 
  3. NHD points 0.637   0.565   0.355   0.349   0.454 
  4. NWI points 0.596   0.465   0.394   0.387   0.433 

 
 
A 12-digit hydrologic unit code (HUC12) or subwatershed is the finest polygon delineation of 
watershed boundaries the US Geological Survey defines, corresponding to about 80,000 
HUC12s. This table considers active 2019 community water systems (CWS). (A), share of 
prediction points within HUC12 areas that serve as drinking water inputs for an active 2019 
CWS predicted as jurisdictional under each regime. (B), same share weighted by the population 
served by each CWS. EO is Executive Order. NWPR is the Navigable Waters Protection Rule. 
 
  



 

 

 
Table S9. Sackett divides AJDs into resource types corresponding to different legal 
categorizations of waters.  
 

  Definition 
Share of 

AJDs 

Share 
juris-

dictional 
  (1) (2) (3) 
A Pre-2015-Post-Sackett       
A1.TNW-404 (a)(1) Traditional Navigable Water (Section 404 Only) 0.00076 1.00 

A1.TNW-404.10 

(a)(1) Traditional Navigable Water, also subject to 
Sections 9 or 10 of the Rivers and Harbors Act (Section 
10/404) 0.0027 1.00 

A2.INTSTATE-404 (a)(2) Interstate Waters (Section 404 Only) 0.00025 1.00 

A4.IMPDT-404 
(a)(4) Impoundments of waters otherwise defined as 
"waters of the United States" 0.0052 1.00 

A5.TRIB-404 

(a)(5) Tributaries of waters identified in paragraph (a)(1) 
through (4), where the tributary is a relatively permanent, 
standing or continuously flowing body of water  0.094 1.00 

A7-AJD.WETL-404 
(a)(7) Wetland adjacent to a non-wetland water identified 
in (a)(1) - (a)(6) 0.095 1.00 

DRY.LAND 

Dry Land - The review area is comprised entirely of dry 
land (i.e. there are no aquatic features, including 
wetlands, of any kind in the entire review area) 0.055 0.00 

EXCL-PCC (a)(8) Prior converted cropland 0.0027 0.00 

EXCL-WTS 

(a)(8) Waste treatment systems, including treatment 
ponds or lagoons, designed to meet the requirements of 
the Clean Water Act 0.0081 0.00 

NON-JD - PREAMBLE - 
ART.IRR 

Preamble water - Artificially irrigated areas which would 
revert to upland if the irrigation ceased 0.0024 0.00 

NON-JD - PREAMBLE - 
ART.LAKE.POND 

Preamble water - Artificial lake/pond created by 
excavating/diking dry land, used exclusively for purposes 
such as stock watering, irrigation, settling basins, or rice 
growing 0.04 0.00 

NON-JD - PREAMBLE - 
ART.REF.SWIM.ORN 

Preamble water - Artificial reflecting or swimming pools or 
other small ornamental bodies of water created by 
excavating and/or diking dry land to retain water for 
primarily aesthetic reasons 0.0023 0.00 

NON-JD - PREAMBLE - 
NON-TIDAL.DITCH-
DRY.LAND 

Preamble water -Non-tidal drainage and irrigation ditches 
excavated on dry land 0.0033 0.00 

NON-JD - PREAMBLE - 
WATERFILLED.DEP-PITS 

Preamble water - Waterfilled depression created in dry 
land and pits excavated in dry land unless and until the 
operation is abandoned and resulting body of water meets 
definition of WOTUS 0.012 0.00 

 (Continued next page) 
  



 

 

Table S9. Sackett divides AJDs into resource types corresponding to different legal 
categorizations of waters. (Continued) 

  Definition 
Share of 

AJDs 

Share 
juris-

dictional 
  (1) (2) (3) 

NON-JD - 
RAPANOS.GUIDE - DITCH 

Rapanos Guidance - Ditches (including roadside ditches) 
excavated wholly in and draining only uplands and that do 
not carry a relatively permanent flow of water  0.09 0.00 

NON-JD - 
RAPANOS.GUIDE - 
SWALE.EROSION 

Rapanos Guidance - Swales or erosional features (e.g., 
gullies, small washes, characterized by low volume, 
infrequent, or short duration flow) 0.073 0.00 

NON-WOTUS-
LAKE.POND.NEGATIVE-A5 

NON-WOTUS - Intrastate Lake or Pond that is not a 
tributary to a water identified in paragraphs (a)(1) through 
(4) 0.023 0.00 

NON-WOTUS-
STREAM.NEGATIVE-A5 

NON-WOTUS - Intrastate Stream that is not a tributary to 
a water identified in paragraphs (a)(1) through (4) 0.021 0.00 

NON-WOTUS-
TRIB.NEGATIVE-A5 

NON-WOTUS: Tributary to a water identified in 
paragraphs (a)(1) through (4), where the tributary is not a 
relatively permanent, standing or continuously flowing 
body of water 0.19 0.00 

NON-WOTUS-
WETL.NEGATIVE-A7 

NON-WOTUS: Wetland that is not adjacent to a water 
identified in paragraph (a)(1) through (6)  0.28 0.00 

RHA-10NAV 
RHA - Non-tidal water is on the district's Section 10 
waters list (Section 10 Only) 0.00025 1.00 

RHA-10TIDAL 
RHA - Tidal water is subject to the ebb and flow of the tide 
(Section 10 Only) 0.00013 1.00 

        
B Amended-2023-Rule       
A1-1.TNW-404 (a)(1)(i) Traditional Navigable Water (Section 404 Only) 0.0083 1.00 

A1-1.TNW-404.10 

(a)(1)(i) Traditional Navigable Water, also subject to 
Sections 9 or 10 of the Rivers and Harbors Act (Section 
10/404) 0.0033 1.00 

A1-2.TERSEAS-404.10 
(a)(1)(ii) Territorial Seas, also subject to Sections 9 or 10 
of the Rivers and Harbors Act (Section 10/404) 0.0001 1.00 

A1-3.INTSTATE-404 (a)(1)(iii) Interstate Waters (Section 404 Only) 0.0002 1.00 
A2.IMPDT-404 (a)(2) Jurisdictional Impoundment (Section 404 Only) 0.0027 1.00 
A3.TRIB-404 (a)(3) Tributary (Section 404 Only) 0.061 1.00 
A4-1.ADJ.WET.A1-
INTSTATE-404 

(a)(4)(i) Adjacent Wetland, adjacent to (a)(1))(iii) Interstate 
Water 0.0006 1.00 

A4-1.ADJ.WET.A1-
TERSEAS-404 

(a)(4)(i) Adjacent Wetland, adjacent to (a)(1)(ii) Territorial 
Sea 0.0002 1.00 

A4-1.ADJ.WET.A1-TNW-404 (a)(4)(i) Adjacent Wetland, adjacent to (a)(1)(i) TNW 0.013 1.00 

A4-2.ADJ.WET.A2&amp;A3-
404 

(a)(4)(ii) Adjacent Wetland, adjacent to a relatively 
permanent paragraph (a)(2) Impoundment or (a)(3) 
Tributary (Section 404 Only) 0.067 1.00 

 (Continued next page) 
  



 

 

Table S9. Sackett divides AJDs into resource types corresponding to different legal 
categorizations of waters. (Continued) 

A5.INTSTATE.LKPND-404 

(a)(5) Intrastate Lake or Pond not Identified in Paragraphs 
(a)(1) through (4), that is a relatively permanent, standing 
or continuously flowing body of water (Section 404 Only) 0.0023 1.00 

B1-EXCL-WTS (b)(1) Waste Treatment System (Excluded) 0.0088 0.00 

B2-EXCL-PCC 
(b)(2) Wetland Excluded as Prior Converted Cropland 
designated by USDA (Excluded) 0.0007 0.00 

B3-EXCL-DITCH 

(b)(3) Ditches (including roadside ditches) excavated 
wholly in and draining only dry land and that do not carry a 
relatively permanent flow of water (Excluded) 0.11 0.00 

B4-EXCL-ART.IRR 
(b)(4) Artificially irrigated areas that would revert to dry 
land if the irrigation ceased (Excluded) 0.0022 0.00 

B5-EXCL-ART.LK 
(b)(5) Artificial lakes or ponds created in dry land, used 
exclusively for specific purposes (Excluded) 0.031 0.00 

B6-EXCL-ART.REF 

(b)(6) Artificial reflecting/swimming/ornamental pools; 
created by excavating or diking dry land to retain water for 
primarily aesthetic reasons (Excluded) 0.0036 0.00 

B7-EXCL-WTF.DEP 

(b)(7) Waterfilled depressions created in dry land 
incidental to construction activity and pits excavated in dry 
land, until abandoned (Excluded) 0.012 0.00 

B8-EXCL-SWAL.EROS 

(b)(8) Swales and erosional features (e.g., gullies, small 
washes) characterized by low volume, infrequent, or short 
duration flow (Excluded) 0.027 0.00 

DRY.LAND 

Dry Land - The review area is comprised entirely of dry 
land (i.e. there are no aquatic features, including 
wetlands, of any kind in the entire review area) 0.035 0.00 

NON-WOTUS-INTSTATE-
LKPND.NEGATIVE.A5 

NON-WOTUS - Intrastate lake or pond not identified in 
paragraphs (a)(1 - 4) that is not relatively permanent or 
does not have a continuous surface connection to (a)(1) 
or (3) water 0.015 0.00 

NON-WOTUS-INTSTATE-
STRM.NEGATIVE.A3 

NON-WOTUS - Intrastate stream that does not connect to 
a paragraph (a)(1) or (a)(2) water 0.011 0.00 

NON-WOTUS-
TRIB.NEGATIVE.A3 

NON-WOTUS - Tributary evaluated under (a)(3) and 
determined to not be a relatively permanent water with a 
continuous surface connection to paragraph (a)(1) or 
(a)(3) water 0.18 0.00 

NON-WOTUS-
WET.NEGATIVE.A4 

NON-WOTUS - Wetland that does not have a continuous 
surface connection to a paragraph (a)(1) water or to a 
relatively permanent paragraph (a)(2) impoundment or 
paragraph (a)(3) tributary 0.4 0.00 

RHA-10NAV 
RHA - Non-tidal water is on the district's Section 10 
waters list (Section 10 Only) 0.0003 1.00 

  
Each row lists a Sackett resource type from the AJD data. Column (1) describes the resource 
type, column (2) lists the share of all Sackett AJDs the resource type accounts for, and column 
(3) shows the share of the resource type AJDs that are jurisdictional. 
 



 

 

 
Table S10. Rapanos divides AJDs into resource types corresponding to different legal 
categorizations of waters.  
 

        
    Share of 

AJDs 
Share 

jurisdictional   Definition 
  (1) (2) (3) 
IMPNDMNT Impoundment of Jurisdictional Waters  0.011 0.71 
ISOLATE Isolated (interstate or intrastate) waters 0.34 0.000025 

NRPW 
Non-relatively Permanent Water that flows directly or indirectly 
into Traditional Navigable Water 0.052 0.63 

NRPWW 
Wetland Adjacent to Non-relatively Permanent Water that flows 
directly or indirectly into Traditional Navigable Water 0.029 0.87 

RPW 
Relatively Permanent Water that flows directly or indirectly into 
Traditional Navigable Water 0.098 1.00 

RPWWD 
Wetlands Directly Abutting Relatively Permanent Water that 
flows directly or indirectly into Traditional Navigable Water 0.11 1.00 

RPWWN 

Wetlands Adjacent but not Directly Abutting Relatively 
Permanent Water that flows directly or indirectly into Traditional 
Navigable Water 0.037 0.94 

TNW Traditional Navigable Water  0.032 1.00 
TNWRPW Traditional Navigable Water - Relatively Permanent Water 0.0007 0.99 
TNWW Wetlands Adjacent to Traditional Navigable Water  0.038 1.00 
UPLAND Uplands  0.26 0.000064 
  
Each row lists a Rapanos resource type from the AJD data. Column (1) describes the resource 
type, column (2) lists the share of all Rapanos AJDs the resource type accounts for, and column 
(3) shows the share of the resource type AJDs that are jurisdictional. 
 
 

 
  



 

 

Table S11. Tiner (2003) categorizes many types of isolated wetlands.  
 
  Geographic Region 
  (1) 
Tiner (2003) Wetland Types   
Alvar wetlands Level IV ecoregions 50ab (Cheboygan Lake Plain) 
Channeled Scablands wetlands Level IV ecoregion 10a (Channeled Scablands) 
Cypress domes None -- area is too large/no specific agreement 
Delmarva pothole wetlands Level IV ecoregion 63f (Delmarva uplands) 
Desert spring wetlands Level III ecoregions 14 (Mojave Basin and Range) 
Fens None -- area is too large/no specific agreement 
Geysers None -- area is too large/no specific agreement 
Inactive floodplain wetlands None -- area is too large/no specific agreement 
Interdunal and intradunal wetlands None -- area is too large/no specific agreement 
Kettle hole wetlands None -- area is too large/no specific agreement 
Mid- and South Atlantic Wetlands Mid- and South Atlantic Wetlands 
Natural ponds None -- area is too large/no specific agreement 
Playas Level III ecoregion 25 (High Plains) 
Prairie potholes Mann (1974) Prairie Pothole Region 
Rainwater basin wetlands Level IV ecoregion 27f (Rainwater Basin Plains) 
Rock pool wetlands None -- area is too large/no specific agreement 
Salt flats and salt lake wetlands Level III ecoregions 13 (Central Basin and Range) 
Sandhills wetlands Level III ecoregion 44 (Nebraska Sand Hills) 
Seepage slope wetlands None -- area is too large/no specific agreement 
Sinkhole wetlands Level IV ecoregions 69c (Greenbriar Karst), 71e 
Tarn wetlands None -- area is too large/no specific agreement 
Volcanic-formed wetlands Level IV ecoregions 1d (Coast Range Volcanics) 
  
Table shows isolated wetland types from Tiner (50). Column (1) shows mapping to geographic 
regions. 
 
 
 
  



 

 

Table S12. We generate synthetic non-jurisdictional training data within several 
categories of isolated wetlands from Tiner (2003).  
 
  Geographic Region Tiner (2003) Wetland Type(s) 
  (1) (2) 
Cowardin Code   

PABG Palustrine wetland, aquatic bed, intermittently exposed Prairie potholes 

PEM1A 
Palustrine emergent persistent wetland, temporarily 
flooded Playas; prairie potholes 

Pf Palustrine wetland, farmed Prairie potholes 

PUBFx 
Palustrine wetland, unconsolidated bottom, semi-
permanently flooded, excavated Playas; prairie potholes 

PUBHx 
Palustrine wetland, unconsolidated bottom, permanently 
flooded, excavated West Coast vernal pools 

R4SBJ Riverine wetland, surface flooding, intermittent 
Desert spring wetlands; salt flats 
and salt lake wetlands 

  
Table shows Cowardin codes selected for non-jurisdictional synthetic training data, by Tiner (50) 
wetland type. See SM A.3 under “Synthetic Non-Jurisdictional Data: Isolated Wetlands.” Column 
(1) describes associated geographic regions and column (2) lists associated Tiner wetland 
types. 
  



 

 

 
Table S13. Optimal thresholds for each metric allow calculation of model performance.  
 

    Performance Metrics 

                MAE 
Metric 
optimized Threshold AUC F1 Precision Recall Specificity Accuracy US State 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
MAE 0.173 0.691 0.393 0.392 0.394 0.850 0.760 0.001 0.153 
State 
MAE 0.242 0.691 0.368 0.502 0.290 0.929 0.803 0.083 0.182 
Accuracy 0.577 0.691 0.297 0.635 0.193 0.973 0.819 0.137 0.205 
F1 Score 0.242 0.691 0.368 0.502 0.290 0.929 0.803 0.083 0.182 

 
Table shows CLEAR-Sackett model performance. In each row, we choose the threshold which 
maximizes the performance metric indicated. AUC does not depend on threshold choice so it is 
identical across cases. Column (1) lists the resulting threshold. Columns (2)-(9) show all 
performance metrics. Values in bold show the optimized performance values. Selection of 
thresholds in column (1) uses the validation set. Performance metrics in columns (2)-(9) use the 
Sackett test set AJDs. MAE is mean absolute error.  
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